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ABSTRACT 

The fundamentals of computer science are increasingly important to consider as 

critical educational and occupational competencies, as evidenced by the rapid growth of 

computing capabilities and the proliferation of the Internet in the 21st century, combined 

with reimagined national education standards. Despite this technological and social 

transformation, the general education environment has yet to embrace widespread 

incorporation of computational concepts within traditional curricular content and 

instruction. Researchers have posited that exercises in computational thinking can result 

in gains in other academic areas (Baytak & Land, 2011; Olive, 1991), but their studies 

aimed at identifying any measurable educational benefits of teaching computational 

concepts to school age children have often lacked both sufficient experimental control 

and inclusion of psychometrically sound measures of cognitive abilities and academic 

achievement (Calao, Moreno-León, Correa, & Robles, 2015). The current study 

attempted to shed new light on the question of whether using a graphically-based 

computer coding environment and semi-structured curriculum –the Creative Computing 

Course in the Scratch programming language –can lead to demonstrable and significant 

changes in problem solving, creative thinking, and knowledge of computer programming 

concepts. 

The study introduced 24 youth in a summer educational program in Philadelphia, 

PA to the Scratch programming environment through structured lessons and open-ended 

projects for approximately 25 hours over the course of two weeks. A delayed treatment, 

control trial design was utilized to measure problem solving ability with a modified 

version of the Woodcock-Johnson Tests of Cognitive Abilities, Fourth Edition (WJ-IV), 
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Concept Formation subtest, and the Kaufman Tests of Educational Achievement, Third 

Edition (KTEA-3) Math Concepts and Applications subtest. Creative problem solving 

was measured using a consensual assessment technique (Amabile, 1982). A pre-test and 

post-test of programming conceptual knowledge was used to understand how 

participants’ computational thinking skills influenced their learning. In addition, two 

questionnaires measuring computer use and the Type-T (Thrill) personality characteristic 

were given to participants to examine the relationship between risk-taking or differences 

in children’s usage of computing devices and their problem solving ability and creative 

thinking skills. 

There were no differences found among experimental and control groups on 

problem solving or creative thinking, although a substantial number of factors limited and 

qualified interpretation of the results. There was also no relationship between 

performance on a pre-test of computational thinking, and a post-test measuring specific 

computational thinking skills and curricular content. There were, however, significant, 

moderate to strong correlations among academic achievement as measured by state 

standardized test scores, the KTEA-3 Math Concepts and Applications subtest, and both 

the pre and post Creative Problem Solving test developed for the study. Also, higher 

levels of the Type T, or thrill-seeking, personality characteristic were associated with 

lower behavioral reinforcement token computer “chips," but there were no significant 

relationships among computer use and performance on assessments. 

The results of the current study supported retention of the null hypothesis, but 

were limited by small sample size, environmental and motivational issues, and problems 

with the instrumentation of the curriculum and selected measures. The results should, 
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therefore, not be taken as conclusive evidence to support the notion that computer 

programming activities have no impact in other areas of cognitive functioning, 

mathematic conceptual knowledge, or creative thinking. Instead, the results may help 

future researchers to further refine their techniques to both deliver effective instruction in 

the Scratch programming environment, and also target assessments to more accurately 

measure learning.  
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CHAPTER 1 

INTRODUCTION 

The digital age requires competence in a variety of skills in order to be successful, 

some directly related to academics and others indirectly related to academics through 

creative thinking and problem solving. One of the most highly valued skills in the age of 

information is the ability to quickly and efficiently solve problems (Federation of 

American Scientists, 2006); therefore, students entering the workforce should be prepared 

to meet this need. Providing the appropriate educational supports for the development of 

problem solving abilities is not only important for an individual’s success in many 

aspects of life, but also for the collective future of the nation and world at large (National 

Research Council, 2010). The field of computer science may be one avenue in which 

students can learn problem solving skills as it is inherently intertwined with solving 

complex problems using language and logic (diSessa, 2000). Computer programming 

even in the most rudimentary sense has the potential to be an influential, creative, and 

engaging process that can lead to deeper understanding of the physical world (Papert, 

1980). Furthermore, computer-programming activities involve an iterative problem 

solving approach that mimics the scientific method itself (Tracz, 1979). 

According to the US Department of Labor and Statistics (2013) computer systems 

design and related service occupations are predicted to add over 600,000 jobs by 2022, 

which represents six percent of expected job growth across industries. Additionally, 

occupations in which an understanding of central principles of computer science is listed 

as a requisite skill are evident across industries, with 67% of these jobs positioned outside 

of the tech sector (Carnevale, Smith, & Melton, 2011). Clearly, there is demand to 
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educate individuals in the fundamentals of computer science not only to meet the needs 

of the occupational landscape of the modern era, but also to foster the development of 

critical problem solving skills that can be applied to a variety of situations. 

Although there is a need to train technically skilled individuals to solve problems 

with computers, and a potential benefit by increasing problem solving abilities, general 

education in the United States does not put the same kind of emphasis on computer 

science as it does for traditional academic subjects (National Science Foundation, 2009). 

Of the nearly 42,000 high schools in the United States, just over 3,200 offered AP 

courses in Computer Science in the 2015-2016 school year (College Board, 2015). A 

recent large-scale, multiyear research effort conducted by Gallup including students 

ranging from 7th to 12th grade, parents, K-12 teachers, and school administrators 

(principals and superintendents) found that while both parents and students viewed 

computer science as just as important as other classes, e.g., history, math, etc., principals 

and superintendents did not perceive a high demand from students or parents for 

computer science courses in their districts; moreover, less than one third of teachers, 

principals, and superintendents surveyed reported that computer science education is 

currently a top priority for their school or district (Gallup, 2014). 

Some claim that students’ problem solving abilities can directly benefit from 

teaching computer science in an engaging way (Ackaoglu, 2014; Ackaoglu & Koehler, 

2014; Au & Leung, 1991; CSTA, 2011; De Corte, 1992; diSessa, 2001; Hwang, Hung, & 

Chen, 2013; Ioannidou, Repenning, & Webb, 2009; Khasawneh, 2009; Li, 2010). Others 

contend that there are also indirect benefits to more traditional academic subjects through 

more highly developed metacognitive abilities (Allsop, 2015; Clements & Nastasi, 1999; 
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Li, 2010), and creative thinking skills (Clements, 1986; Kim, Chung, &Yu, 2013). 

Recognition that understanding fundamental principles of computer science is of great 

importance in education has come to light with the National Research Council’s (NRC) 

publication of A Framework for K-12 Science Education; specifically, the NRC’s 

decision to list computational problem solving as one of the eight essential practices for 

the scientific and engineering dimension (NRC, 2012). In response, non-profit 

organizations and professional associations have recently collaborated to align courses in 

computer science fundamentals to national education standards in hopes of more 

regularly folding in computer science instruction into the daily school schedule 

(“Code.org,” 2018). It is, therefore, important to carefully consider and examine how 

engaging in computational problem solving affects both academic and cognitive 

outcomes. 

Computer Science (CS) is an academic subject that is often viewed as 

intimidating and difficult to learn for many students. Using programming environments 

that reduce the cognitive load inherent in traditional programming languages due to 

complex and unfamiliar programming syntax is crucial for young children to access and 

develop computational thought processes (Kelleher & Pausch, 2003). Kafai and Burke 

(2013) note that the past decade has seen a rise in the number of introductory 

programming languages that make coding a more intuitive and personal process. The 

opportunities to cultivate the educational potential of learning to program are many, and 

the consequences are profound; however, many questions still remain in light of the 

existing literature on how computer-programming activities can affect educational 

outcomes. 
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The current study is one of the first in the field of educational research in 

computational thinking to utilize a control trial design to experimentally examine the 

relationship between participation in computer programming activities, problem solving, 

and academic achievement (particularly in the domain of mathematical problem solving) 

using standardized measures commonly found in the world of cognitive and academic 

assessment. The primary research questions being evaluated in this study are as follows: 

1) Do youth who participate in programming activities demonstrate measurable changes 

in problem solving ability and creative thinking? And, 2) did they learn and apply 

computational thinking skills after participating in an introductory computer coding 

curriculum using a novice-oriented, graphically-based programming environment? 

An intuitive link between mathematical problem solving ability and computer 

programming exists because programming utilizes principles of logic much like the use 

of inductive and deductive logic plays a primary role in mathematical problem solving, 

and it was hypothesized that children who engage in computer-programming activities 

will show significantly higher levels of mathematical problem solving ability and fluid 

reasoning ability as compared to those who do not engage in enriched computer-

programming activities. Additionally, children who receive instruction in computer 

programming through a guided curriculum were hypothesized to demonstrate gains in 

programming conceptual knowledge and be able to apply this knowledge in a post-test of 

programming conceptual knowledge. Lastly, due to the open-ended, and limitless nature 

of lessons within the selected curriculum, measures of creativity are hypothesized to 

increase after completing the programming course. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

The increasingly complex and interconnected world of the 21st century is a 

double-edged sword that offers both incredible possibilities, and grave uncertainties. The 

exponential growth of computer processing capabilities in the twentieth century, 

combined with ever cheaper, more efficient data storage technologies (among many other 

advances in science and engineering) has impacted nearly every aspect of daily living, 

reaching even the most remote corners of the earth. From the smart phones that allow us 

to video chat with loved ones across the planet, to the vast electrical grid that connects 

power plants around the globe, there is a network of integrated systems and technologies 

continuously communicating, responding, and changing according to a complex set of 

logical rules and binary signals. 

The sacrifices needed to develop such technologies have consumed time, energy, 

and natural resources on a scale never before witnessed by the human species. The 

scientific community unequivocally agrees that humankind has altered global 

environmental systems, and that the biodiversity of ecosystems both on a small and large 

scale is being threatened (Intergovernmental Panel on Climate Change, 2013). What 

society needs are creative minds that have the skillset and confidence to take on both the 

large and small-scale problems using the tools, strategies, and knowledge at their 

disposal. Of increasing relevance and importance is the ability to solve real world 

problems through the design and implementation of digital systems using principles of 

computer science (CS), a concept that has been termed computational thinking (CT). 

Articulating the difference between education technology, i.e., using computer 
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technology to learn about other subjects; information technology, i.e., the proper use of 

technologies by which people manipulate and share information; and computer science, 

i.e., the study of computers and algorithmic processes, including their principles, their 

hardware and software designs, their applications, and their impact on society has been 

the focus of organizational initiatives to develop educational standards (Computer 

Science Teachers Association, 2011, 2017). 

A comprehensive understanding of the intricacies and technical details of how the 

staggering number of digital systems and laws of nature interact and operate within the 

world is undoubtedly beyond the mental capacity for any single person; however, 

understanding the basic rules and languages that govern these systems is an achievable 

task that can be fostered through explicit instruction and collaborative experimentation. 

The short-term benefits of knowing how to use the language of computers to abstract and 

manipulate data could result in an employment opportunity among a variety of traditional 

industries and newly emerging fields. In addition, the movement toward a more digitally 

fluent global culture achieved through increased knowledge and participation in 

computational creation has the potential to solve some of humankind’s most pressing 

issues. 

Primary and secondary education is tasked with providing young citizens with the 

knowledge and opportunities to be informed and productive members of society who are 

capable of adapting to and influencing their natural and social environment. A crucial 

ingredient to the recipe for citizenship is the ability to critically understand and analyze 

information with objectivity, which is analogous to the understanding of science and the 

scientific method. A fundamental understanding of biological systems and physical laws 
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as well as the way humans interact both on a social and technological level to affect 

natural systems is an essential responsibility of all who aspire to positively influence the 

world around them. Moreover, providing students not only with knowledge, but more 

importantly, with the skills to think critically should be the ultimate goal of education, 

and is the very foundation of democracy (Bruner, 1960). 

Modern civilization is the culmination of technological innovation and human 

ingenuity driven by environmental and economic forces, fueled by scientific discovery. 

Manipulating the environment to achieve desired ends and streamlining the process of 

realizing those ends is a hallmark of global economic and societal progress, and more 

broadly, humankind’s adaptability and success as a species. The anthology of critical 

inventions and discoveries prior to and during the modern era is beyond the scope of the 

current review; however, within the last decade the pace of scientific discovery and 

technological innovation has been particularly accelerated as wireless communication 

and integrated computer networks have allowed individuals, businesses, and nations to 

more rapidly exchange information, services, and products. 

The societal and economic dynamics of the information age are discussed at 

length in Castells’ (1996) The Rise of the Network Society. The three-volume work 

thoroughly explores and describes the ways in which the instantaneous flow of 

information, currency, and cultural capital affect the lives of those living within its 

physical and virtual boundaries. Castells discusses the historical context of technological 

innovation and its relationship to the progression of civilization across time and space, 

while also laying the theoretical groundwork for how the new economy of information 

technology would evolve over time. Among many other things, he focuses specifically on 
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the importance of an educated portion of the population in contributing to societal and 

economic progression by affecting technological change as it relates mass media culture. 

The economy of the information age has been in large part driven by the 

proliferation of ever-increasing means to quantify individual and group behavior through 

digital information. In a white paper prepared for the Computing Community Consortium 

committee of the Computing Research Association, Bryant, Katz, and Lazowksa (2008) 

describe the explosion of data within the previous decade as a result of technological 

developments in sensors, computer networks, data storage, cluster computer systems, 

cloud computing facilities, and data analysis algorithms. Bryant et al. (2008) call for 

increased investment in networking infrastructure, education, and research to address the 

existing limitations on utilizing this “big data” to its full potential. 

As the sheer amount of data produced by an individual, or organization 

exponentially increases over time, the skills to analyze, transform, and interpret the data 

generated from the growing amount of digital activities inherent in daily life are 

becoming increasingly valuable (Lohr, 2012). The implications of this relatively rapid 

and dramatic shift in the amount of information available to governments, corporations, 

and individuals are such that a mere understanding of how to functionally navigate the 

digital world to obtain goods, services, and entertainment is now nearly an instinctive 

activity. Although being a user of digital devices makes up a large portion of individuals’ 

interactions with computing devices, a movement beyond the mentality of simply being a 

user of digital technology in favor of being a participatory contributor is now more than 

ever being recognized as an important part of modern life, and an equally important 

educational opportunity (Kafai & Burke, 2013). 
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Despite the apparent importance of understanding fundamentals of computer 

science, and scientific knowledge in general, the state of science education in the United 

States continues to be the focus of criticism, even after over 30 years since the 

publication of the seminal report, “A Nation at Risk: The Imperative for Educational 

Reform” (US Department of Education, 1983). The perpetually bleak portrayal of K-12 

science education in the US continues in part because of a relatively mediocre 

international ranking on the Program for International Student Assessment (PISA), in 

addition to unexceptional results from the science portions of the US National 

Assessment of Educational Progress (NAEP), which indicated that just 21 percent of high 

school seniors in the US were proficient in science knowledge (Fleischman, Hopstock, 

Pelczar, & Shelley, 2010). National initiatives specifically to support teachers and 

schools in the delivery of high quality Science, Technology, Engineering, and Math 

(STEM) education for their students have been initiated and continue to undergo 

refinement. In 2005, for example, the National Science Foundation (NSF) developed a 

new vision for science and engineering research and science education for 2020 (NSF, 

2005). In 2010, the Computer Science Education Act, which aimed to provide grants to 

state educational agencies to strengthen CS education at the elementary and secondary 

level, was introduced in the United States House of Representatives in 2010 (H.R. 5929, 

2010). In 2014, the STEM Education Act was introduced and passed in the house (H.R. 

5031, 2014). This bill provided funding through the National Science Foundation (NSF) 

to research and development for STEM out-of-school learning and STEM learning 

environments, and research that advances the field of informal STEM. 
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Relatedly, in 2012, the National Research Council developed a comprehensive 

framework for K-12 science education in the United States, commonly referred to as the 

Next Generation Science Standards (NGSS), which focuses on the integration of core 

science concepts and practices into dynamic learning experiences across grade levels 

(National Research Council, 2012). Around the same time, the Association for 

Computing and Machinery (ACM), the Computer Science Teachers Association (CSTA), 

the International Society for Technology in Education (ISTE), and the National Science 

and Math Initiative (NSMI) along with advisors in the computing community (higher 

education faculty, researchers, and K-12 teachers) convened a task force to rethink how 

computer science education can be incorporated into K-12 classrooms. Based on 

computer science standards previously developed in 2003 and then revised by a CSTA 

task force (CSTA, 2011), these updated standards packaged computer science as a 

method of learning more traditional academic subjects while promoting 21st century 

competencies. The developers of these standards argue that computer science, as opposed 

to computer literacy, should be considered a core component of the general education 

curriculum because it bolsters critical thinking and problem solving skills. The CSTA 

task force released a newly revised version of the CS Standards at the 2017 CSTA 

Annual Conference, redeveloping computer science learning standards to specifically 

align not only with the NGSS framework, but also with Common Core State Standards, 

and the Partnership for 21st Century Skills: Essential Skills for Success guidelines 

(CSTA, 2017). The goal of both the NGSS and CS standards is to provide a framework 

for state and local education agencies to develop their own standards, and attempt to 

provide example activities and lessons designed to tap into various areas. It was based in 
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the assumption that educators must be skilled and competent enough to effectively 

incorporate learning activities designed to promote computational thinking skills at a 

more general curriculum level. 

The term computational thinking (CT), popularized by Jeanette Wing in 2006, in 

its simplest form refers to the ability to understand how computers can be used to create 

things or solve problems. It involves abstracting data, thinking algorithmically, 

evaluation and generalization, modeling, and specific processes and perspectives. These 

skills are high-level cognitive processes that are often difficult for some teachers to 

understand (Grover & Pea, 2013). This is one reason why teachers have difficulty 

incorporating activities designed to promote CT skills into their instruction. In general, 

however, many researchers in the field of computer science in education feel that even 

very young children have the abilities to grasp CT concepts, and therefore, should be 

exposed to CT lessons and activities early in their education. This term has become 

subject to continuous practical redefinition and conceptual refinement since its 

introduction, and is discussed in more detail in a separate section below. 

The educational setting has the potential to serve as an ideal medium for which to 

incorporate the NGSS and CS standards because of the growing importance in society 

and broad utility for skilled individuals with well-developed CS competencies across 

disciplines and industries; however, K-12 education has failed to tap into this potential. A 

2010 report commissioned by the ACM and the CSTA found that despite emphasis of 

national, state, and local policy makers on the expansion of high quality STEM primary 

and secondary education, the number of schools offering introductory courses in 

computer science declined by 17 percent between 2005 and 2009, and schools offering 
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advanced courses in computer science declined by 35 percent in the same time period 

(Wilson, Sudol, Stephenson, & Stehlik, 2010). In a similar vein, a review of the existing 

literature surrounding the teaching of computer coding at the elementary level indicates 

that although there is a call to incorporate coding in the US elementary curriculum, few 

schools are actually implementing such activities (Pinkston, 2015). 

A renewed public interest in computer coding fueled by increased recognition of 

the practical importance of computational thinking skills in the workforce, and the global 

propagation of education-based organizations whose mission is to develop innovative 

problem-solvers and promote CS for all, is opening the door for computer science to be 

woven into aspects of K-12 education beyond its current focus on education technology. 

Recently, The White House has called for a “Computer Science for All” initiative that 

plans on dramatically increasing funding for states to expand K-12 computer science 

education by training teachers, expanding access to high-quality instructional materials, 

and building effective regional partnerships (The White House, 2016). Most recently, 

development of a revamped high-school level AP Computer Science Principles course 

was completed with a focus on lessons and projects designed to explore computational 

concepts, processes, and practices, while also more clearly laying out learning objectives 

and assessment methods (The College Board, 2017). The exciting future of computer 

science education, however, should not overlook its past, and in the following section, 

some of the milestones and relevant research related to computers in education are 

presented and discussed. 
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Historical Developments in Educational Technology 

The history of computing technology and computer science in education would 

not be complete without mention of the work of Seymour Papert, who most notably 

authored Mindstorms: Children, Computers, and Powerful Ideas (1980). In this book he 

argued that children have the capability of understanding how to use computers on a 

complex level, and that learning to use computers in this way can change how they think 

about the world. He rooted this idea in constructivist learning theory, which in its 

simplest form suggests that individuals construct meaning and build knowledge in 

relation to their experiences and ideas. This epistemological philosophy is evident in the 

writings and theories presented by such influential psychologists as Jean Piaget, who 

focused on how individuals construct knowledge and meaning from a developmental 

perspective (Piaget, 1962); and Lev Vygotsky, who incorporated socio-cultural and 

historical contexts to explain how individuals construct knowledge of the world to 

develop higher-level cognitive processes such as problem solving ability (Vygotsky, 

1978). Papert, however, elaborated on the constructivist perspective on learning, 

suggesting that the context in which individuals most effectively build knowledge 

structures occurs when they are actively engaged in constructing a public entity that is 

meant to be shared with others. The term he used to describe this assertion was 

constructionism (Papert, 1991). 

The seeds of constructionism had been planted in Papert’s mind long before the 

term was coined with the development of the Logo programming language in 1968 at the 

Massachusetts Institute of Technology (MIT) based technology company, Bolt, Beranek, 

and Newman (BBN) by Seymour Papert, Wallace Feurzeig, and Daniel Bobrow. The 
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Logo programming language was designed as a tool for learning through simulations, 

multimedia presentations, and games in mathematics, language, music, robotics, 

telecommunications, and science (“Logo History”, 2015). The Logo programming 

environment utilizes a turtle, or “sprite,” that can be programmed to move in a virtual 

space to create and manipulate graphics, geometrical shapes, and designs. As users 

become more proficient in Logo, they are able to execute more complex series of 

commands while receiving immediate visual feedback on their programs. Papert (1980) 

claimed that children learn to use the Logo turtle as an “object-to-think-with” (p. 11) 

allowing them to link their internal representations of the virtual world of the Logo turtle 

with the physical world in which they inhabit. He claimed that all learners regardless of 

age or ability could learn to use computers to construct knowledge about the world, and 

he profoundly influenced a generation of scientists, educators, and students with his 

philosophy. The popularity of Logo as a programming language waned in the 1990s, but 

was renewed as variations of the language that allowed for more functionality, 

interactivity, and capability were developed under direction of Mitchell Resnick at MIT 

and through collaboration with Uri Wilensky of Northwestern University, e.g., StarLogo, 

NetLogo, LEGO Logo (Hayes & Games, 2008; “Logo History,” 2015). 

As personal computers became more widespread in the subsequent decades 

following the development of Logo, and in tandem with the popularity of Mindstorms, 

educators and computer science researchers became interested in how Logo could be 

used to not only introduce students to the burgeoning world of computer science, but also 

how it could be used to enhance specific academic skills. A library database search of 

scholarly and peer-reviewed journal entries with the term “Logo” in the title and the 
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terms “learning” and “programming” in the abstract yielded 37 articles from 1980 to 

2016 peaking in 1986. A more thorough search including search terms describing other 

programming languages of the era like BASIC and Pascal, which were programming 

languages developed with a similar goal, i.e., to introduce computer programming to 

children, yielded a larger return of articles; however, the wave-like trend beginning in the 

mid to late 1980s and lasting until the early 1990s for the emergence of studies involving 

these programming languages remained the same. Many of the articles returned in the 

original search investigated the relationship of programming with Logo to mathematical 

understanding of geometric or algebraic concepts (Clements & Sarama, 1995; Feurzeig, 

1986; Noss, 1986; Olive, 1991; Valente, 2003) or more general problem solving abilities 

(Au & Leung, 1991; Battista & Clements, 1986; DeCorte, 1992; Howard, Watson, & 

Allen, 1993; Khasawneh, 2009; Pardamean & Evelyn, 2014; Poulin-Dubois, McGilly, & 

Shultz, 1989; Suomala, 1996). Another subset of research with Logo programming 

investigated how children learn while using Logo through various cognitive perspectives 

(Geva & Cohen, 1987; Gibbons, 1995; Mayer & Fay, 1987; Olive, 1991; Wilson, 

Mundy-Castle, & Sibanda, 1991; Yelland, 1995) or instructional methodologies 

(Emihovich & Miller, 1988; Fay & Mayer, 1994; Hoyles, Sutherland, & Evans, 1986; 

Lin, Li, Ho, & Li, 2007; Littlefield, Delcios, Victor, Bransford, Clayton, & Franks, 1989; 

Sutherland, 1993). Finally, one study evaluated how learning to program in Logo affected 

a measure of creativity (Clements, 1986). 

Of the studies identified in the limited literature search mentioned above, many 

report learning gains across measures when students engaged in programming with Logo 

(Au & Leung, 1991; DeCorte, 1992; Emihovich & Miller, 1988; Mayer & Fay, 1987; 
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Pardamean & Evelyn, 2014; Suomala, 1996). On the contrary, other researchers found 

that without sufficient instructional support, Papert’s ubiquitous belief that any child 

could construct meaningful knowledge about the world through exploration and creation 

in a virtual world (mainly through Logo) was not supported by improved problem solving 

ability or mathematical achievement (Battista & Clements, 1986; Clements, 1986; Cohen, 

1987; Littlefield et al. 1989; Palumbo, 1990; Pea & Kurland, 1984; Wilson et al., 1991). 

One such study challenging Papert’s claims that all students are capable of 

learning how to program with computers involved preschool children who were 

instructed on how to use the Logo environment for 45 minutes per week for eight months 

(Vaiyda, 1985). Fourteen preschool children ranging from 55 to 65 months in age were 

assessed across the following four variables: 1) field dependence-independence (a 

measure of cognitive style), 2) creativity, 3) mathematical ability, and 4) computer or 

computer-related experiences in the home and outside the home. Children were 

categorized into three groups corresponding to their ability to use Logo effectively as 

determined through structured observation. None of the measured variables significantly 

differed across groups; however, all of the children in the group that demonstrated the 

most advanced understanding of Logo had video games in their home and played arcade 

games, as opposed to three out of the ten children in the other less advanced Logo 

programming groups. This early attempt to teach preschool-age children how to use Logo 

provided some support that young children could effectively interact and use functions of 

Logo; however, the relatively low dosage of the treatment, i.e., 45 minutes per week, 

combined with the extremely small sample size (n = 14) may not have been enough to 

produce or detect changes across the measured dimensions. 
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In another study, Battista and Clements (1986) tested whether groups of fourth 

and sixth grade students who participated in either 1) computer-aided instruction (CAI) 

using programs designed in a game-like format intended to teach specific skills, e.g., 

Rocky’s Boots from The Learning Company or Thinking With Ink from the Minnesota 

Educational Computing Consortium; or 2) used Logo Turtle graphics after whole-class 

instruction, performed differently on problem solving and math achievement measured 

by responses to researcher-created word problems categorized either as procedural and 

conceptual problems, or executive processing levels of problems solving. Students 

participated in two 40-minute sessions per week for a total of 42 sessions across the 

school year. The researchers found no significant differences between students who used 

Logo, CAI, or control groups from pre to post-test measures of procedural and conceptual 

aspects of problem solving; however, the Logo group demonstrated significantly greater 

gains from pre-test to post-test than either CAI or control groups in metacognitive aspects 

of problem solving, i.e., deciding on the nature of the problem, choosing a solution 

strategy, selecting a mental representation, and monitoring solution processes. The 

authors concluded that there was no evidence that computer-aided activities improved 

students’ procedural or conceptual knowledge of math or ability to solve problems, but 

may improve executive-level problem solving skills. 

In a small scale study, Kurland and Pea (1985) investigated how a group of eleven 

and twelve-year-old children (n = 7) verbally explained how recursive Logo programs 

functioned after roughly fifty hours of classroom programming time in Logo over two 

years. Classroom programming time consisted of exploratory lessons in Logo, and 

students were provided direct instruction in iteration and recursion. Recursion is a 
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cognitively complex concept important in computer science that allows a function to call 

itself within the program text, enabling an infinite number of solutions to a given problem 

using simplistic commands arranged and defined appropriately. Students were asked to 

look at short Logo shape-drawing programs of varying levels of complexity, then to give 

a verbal description of how the program would work, and finally, to hand draw how the 

program would run. The authors found that children demonstrated significant difficulty 

explaining recursive functions, and often misinterpreted the context, assigned intention to 

the Logo turtle, used incorrect concepts, e.g., looping, or attributed natural language 

meanings to the computer code. 

Although the majority of the studies described above occurred in the mid to late 

1980s, some researchers have called for reevaluation of this era in the literature due to its 

importance for the future of computer coding in education (Grover & Pea, 2013). In 

reality, however, the field moved in a different direction partly as a result of conflicting 

results from a number of studies investigating the potential educational and cognitive 

benefit of programming with Logo, combined with advancements in computer processing 

capabilities and software portability, i.e., floppy disks and CD-ROMS. Computer 

technology in the educational environment began to gravitate away from the 

programming-for-all philosophy championed by Papert through Logo, and toward the use 

of educational games as an emerging industry of children’s software began to dominate 

the landscape in the mid to late 1990s. 

Valente (2003) notes that in the 1980s, computers in schools were very simple 

machines that were relegated to one of two roles, i.e., simple drill and practice machines 

to teach specific content through tutorials, simulations, or games, or for programming 
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activities primarily using Logo. Ito (2008) describes the cultural history of educational 

software aimed at elementary students, tracing the development of children’s software, 

learning games, or “edutainment” as it progressed through the 1980s and 1990s. He 

describes the shift from drill-and-practice CAI systems to software that drew from 

aspects of the growing video and arcade game industry, e.g., Number Munchers, Math 

Blasters, Oregon Tail, Reader Rabbit, KidPix, and Where in the world Is Carmen 

Sandiego? He further decomposes educational software into three strands, each 

associated with either behaviorist, play-centric, or constructivist educational 

philosophies. The academic strand typically embedded academic mini-games within a 

larger role-playing or action-based scenario, e.g., Math Blasters, choosing to focus more 

on curricular alignment and behaviorist principles of positive reinforcement for task 

completion rather than innovative game-play. The entertainment strand primarily focused 

on play-centric “click-and-explore” interactive environments, e.g. Myst, with some subtle 

academic content embedded within the environment as opposed to overt academic 

challenges in order to obtain a reward as part of game play. The constructive strand rested 

heavily on Papert’s ideology and provided children with toolkits to create computer-

based programs or simulations, e.g., SimCity. These types of software were intended to 

promote technical empowerment, i.e., “the ability to translate authorial agency into a 

media form” (Ito, 2008, p. 101). Although many of these gaming titles were marketed to 

parents, educators and schools began to buy in to some of the claims that children could 

learn important academic knowledge through gameplay. The fact that children were 

entertained and motivated by these educational games was a strong selling point for their 
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adoption as a part of computer education in schools and in homes across the United 

States and elsewhere in the world. 

The changing technological landscape continued to influence computers in 

education through the late 1990s, and an increasing emphasis was placed on computer 

literacy. As computers became cheaper, smaller, and loaded with more modern and easy-

to-use operating systems, a large amount of federal funding was set aside to computerize 

schools. For example, the 1996 Technology Literacy Challenge Fund allocated two 

billion dollars for schools to provide training, resources, and infrastructure to “connect all 

classrooms in America to the information superhighway” (Riley, Kunin, Smith, & 

Roberts, 1996). The computerization of American classrooms dramatically reduced the 

ratio of computing machines to students, opening new doors for how computers could be 

used in schools, and tasked both educators and students alike to develop computer 

literacy skills, i.e., possess the knowledge and skill to functionally navigate through a 

computer interface, use word-processing software, and explore the internet.  

Specifically, a virtual hands-on approach to learning and research became 

possible through developments in word-processing and presentation software, e.g., 

Microsoft Word and PowerPoint, through the incorporation of smart-board technology as 

a learning tool to enhance classroom instruction, and through the availability of various 

forms of media with increasingly powerful web browsers. The World Wide Web became 

more complex and user-friendly, and collaborative classroom environments that 

integrated the use of dynamic classroom blogs and other digital learning communities 

with traditional instructional methods emerged as a common practice in secondary and 

higher education. This “blended,” or mixed, classroom wherein students submit work, 
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receive feedback, and critique others’ work continues to alter the manner in which 

instruction is delivered and learning is assessed. 

The movement toward computer literacy in the 1990s and 2000s, albeit a 

necessary progression, overshadowed the fundamental tenets of computer science that 

had been so much a part of the early endeavors in computer programming in education 

during the 1980s with Logo and other early programming languages such as BASIC and 

Pascal. Some schools may offer an additional computer technology class where students 

are educated on how to sift through the immense amount of information available to them 

on the Internet for research purposes, and use various software to create multimedia 

presentations and projects, but rarely do these supplemental classes introduce students to 

CS and its applications, or exist uniformly across districts and regions that have varying 

financial and logistical resources. A transformation and return to CS fundamentals 

appears to have occurred in recent years, as a resurgence of computer coding, fueled by 

national initiatives and non-profit organizations, has captured the attention of important 

and influential stakeholders ranging from parents to policy-makers. Countries around the 

world have recently adopted CS as part of their school curricula, e,g, the UK and 

Denmark (Caspersen & Nowack, 2013); Russia, South Africa, and Israel (Zur-Bargary, 

2012); New Zealand (Bell, Andreae, & Robins, 2012) and South Korea (Choi, An, & 

Lee, 2015) to name a few. 

In the book Connected Code, Kafai and Burke (2014) describe the return of 

interest in teaching children coding as a result of increased recognition that thinking like 

a computer scientist is an important step in solving real-world problems, designing useful 

systems, and succeeding across disciplines. The authors explore the aspects of 
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programming that are appealing to children, the contexts in which children use 

programming, and how children learn to program specifically using the Scratch 

programming environment (an extension of the Logo programming language). By 

focusing on: a) how computer coding can be applied to make things, e.g., video games 

and digital stories; b) the ways in which it is not just an individual venture but also 

increasingly a social activity; c) how repurposing or “remixing” computer code affects 

skill acquisition; and d) how code can be used in beyond the computer screen, e.g., 

robotics, the authors explain how computer coding has once again become a topic of 

interest in education, and why it is now as important as ever. 

The introduction of the Scratch programming environment has influenced how 

children learn to code, how educators can utilize the platform to teach CS concepts and 

academic content, and how researchers can better understand what it means to think 

computationally. Scratch is a simplified, easy to use, and powerful introductory 

programming environment that was born out of the MIT-based Lifelong Kindergarten 

research group, extending the development of Logo Mindstorms for the Lego Company 

to create a playful programming language that, much like snapping Lego bricks together, 

became a visually-based, drag-and-drop, block-command environment (Resnick, Kafai, 

& Maeda, 2003). Scratch follows Papert’s (1980) guidelines to a successful programming 

language and environment intended for use with young learners, i.e., a low floor, a high 

ceiling, and wide walls. In other words, the syntax of the language should allow students 

with no background whatsoever in computer science the ability to write and understand 

programs (low floor), while also allowing users to fine tune their skills to create infinitely 

complex programs to solve increasingly complicated problems as their familiarity and 
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skills increase (high ceiling), and support many different types of projects, so that users 

who possess a wide variety of interests and skillsets can interact and create on a personal 

level (wide walls). The Scratch environment encourages “tinkering” to create 

personalized digital media ranging anywhere from animations to games. Users arrange 

various command blocks to create stacks of code that can include loops, conditionals, 

variables, data structures, and even user-created functions (Resnick et al., 2009). The 

Scratch website (www.scratch.mit.edu) serves as a community hub for member-created 

projects for others to view, interact with, and “remix.” Due to its easy to use and visually 

pleasing design and interface, Scratch has become popular among children, teachers, and 

researchers alike. 

Computational Thinking as a 21st Century Literacy 

Coding is a critical skill, and has even been described as a new literacy for all 

children (diSessa, 2000; Rushkoff, 2011), but what does “coding” mean? Essentially, 

coding is applying the language of computers to achieve a desired result. The term has 

risen in popularity in recent years (Kafai & Burke, 2013), and to understand what it truly 

means to code, one must also understand what it means to think computationally. 

Computational thinking (CT) in its modern conceptualization, was popularized 

after Jeannette Wing published an article using and describing the term in the March 

2006 edition of the Communications of the ACM. Wing (2006) defined CT as designing 

systems for more effective problem solving with computers. The Royal Society (2012) 

describes the essence of CT by stating that it is “the process of recognizing aspects of 

computation in the world that surrounds us, and applying tools and techniques from 

Computer Science to understand and reason about both natural and artificial systems and 



www.manaraa.com

 

 24 

processes” (p. 29). Wing (2008) elaborated on her original definition by suggesting that 

CT is the automation of abstraction; moreover, it is a process of design that attempts to 

answer the questions, what are computers better at, and what are humans better at? In an 

article featured in The Link magazine (a magazine of the Carnegie Mellon University 

School of Computer Science) in March of 2011, Wing was inspired by electronic 

discussions among colleagues to addend her definition of computational thinking to 

encompass the following: “Computational thinking is the thought processes involved in 

formulating problems and their solutions so that the solutions are represented in a form 

that can be effectively carried out by an information-processing agent” (Wing, 2011). 

One of those colleagues, Al Aho, defines CT as the thought processes involved in 

formulating problems so that their solutions can be represented as computational steps 

and algorithms (Aho, 2012). 

Brennan and Resnick (2012) provide a framework of analyzing computational 

thinking across the following three dimensions: “computational concepts,” i.e., 

sequences, loops, parallelism, events, conditionals, and data structures; “computational 

practices,” i.e., being incremental, reusing and remixing, testing and debugging, and 

modularizing and abstracting; and “computational perspectives,” i.e., expressing, 

connecting, and questioning. The last dimension refers to the way that designers view and 

engage with digital media. This operational definition for CT has subsequently been used 

to categorize the CT literature by various researchers (Kafai & Burke, 2016; Lye & Koh, 

2014). Grover and Pea (2013) discuss computational thinking using Brennan and 

Resnick’s (2012) three-pronged operational definition and provide an overview of how 

computational thinking in education in the United States has yet to be realized in the K-



www.manaraa.com

 

 25 

12 arena. The authors conclude with a call for research investigating developmental 

expectations and trajectories associated with aspects of computational thinking. 

Likewise, Lye and Koh (2014) used Brennan and Resnick’s (2012) three-pronged 

definition of computational thinking to analyze 27 studies of computer programming 

activities carried out in K-12 and Higher Education settings. The authors included only 

articles published in peer-reviewed journals in their search criteria. They identified nine 

studies in the literature that were carried out in the K-12 environment, and concluded 

their review by highlighting the importance of studying the developmental trajectory of 

computational thought processes in young children, specifically calling for examination 

of learning outcomes outside of the computational concepts component of Brennan and 

Resnick’s (2012) operational definition of CT.  They also point out the need for more 

studies in the classroom environment, as opposed to after-school programs. 

In response to these calls for developmental clarification, Selby, Dorling, and 

Woollard (2014), working for the Computing at School (CAS) organization in the UK, 

attempted to delineate the definition of CT by developing the “Computing Progression 

Pathways” framework for the assessment of CT skills. This endeavor was undertaken to 

provide standards or the National Curriculum Program for the Department of Education 

in the UK across CT areas and over a range of developmental stages. These researchers 

used Selby and Woollard’s (2013) conceptualization of CT skills, which was developed 

by establishing the following criteria for CT thought processes through a literature review 

of CT definitions: abstraction, decomposition, algorithmic design, evaluation, and 

generalization. They then categorized each stage of development across content 

categories according to these CT thought processes. The framework specifically outlines 
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developmental expectations across content categories of the CAS curriculum, i.e., 

algorithms, programming and development, data and data representation, hardware and 

processing, communication and networks, and information technology, and provides 

narrative descriptions for various age ranges across CT concepts, i.e., algorithmic 

thinking, evaluation, decomposition, and generalization across age-bands (Computing at 

School, 2012). Similarly, The CS standards released by the CSTA in 2017 is organized 

broadly by age level, as well as CS concepts and subconcepts, with associated practices 

across age levels and subconcept areas (CSTA, 2017). The hope is that by providing age-

based expectations for CT skills and CS concepts, researchers and educators will be more 

effectively able to teach students and measure their student learning.  These frameworks, 

however, may need further validation research to solidify the normative developmental 

trajectory across ages, but regardless of whether or not they are reliable and valid 

standards evidenced through empirical support, they may serve as useful tools for more 

inexperienced instructors to better measure and incorporate CT in their lessons and 

activities. 

How Can Educators Best Support the Development of CT Skills? 

Researchers and professional organizations, e.g., the CSTA, have urged the field 

of computer science education to develop practical ways in which educators can 

incorporate the tenets of CT into their daily classroom activities. Barr and Stephenson 

(2011) outline core computational thinking concepts and corresponding ways that these 

concepts can be represented in various academic subjects. For example, they suggest that 

the CS principle of abstraction, i.e., the use of procedures to encapsulate a set of often 

repeated commands that perform a function (conditionals, loops, recursion, etc.) is 
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analogous to summarizing facts, and deducing conclusions from facts in the academic 

area of social studies. The development of transposable CS standards that are easy to 

align with academic content is the beginning of fostering CT skills in K-12 education, 

and moving forward, the challenge to proponents of CT in the K-12 curriculum will be to 

translate these standards into understandable, easy-to-implement activities across grade 

levels and subjects even for teachers who do not consider themselves skilled or 

knowledgeable in computer science. Efforts to integrate CT into core curricula have been 

made by professional associations, e.g., the CSTA, ISTE, and non-profit organizations 

like Code.org, Computing at School, Globaloria, and Shodor, which provide materials 

and instruction relating to computational science (“Shodor,” 2016), as well as corporate 

entities, e.g., Google’s Computational Thinking website (www.google.com/edu/ect) that 

offers videos explaining what CT is, and resources for educators to facilitate the 

integration of CT in the classroom. An innovative group based in New Zealand has even 

developed ways to introduce CT skills without the use of computers. The Computer 

Science Unplugged website offers a collection of free learning activities that teach 

concepts such as binary numbers, algorithms, and data compression through games and 

puzzles using easily producible classroom materials (www.csunplugged.org). The 

resources to teach CT in the K-12 environment exist, but implementing them on the 

ground is a challenge that may still take time and energy to overcome. 

Despite efforts to integrate CT in the classroom, students in the K-12 arena 

predominantly engage in computer programming activities in out-of-school camps or 

clubs (Lye & Koh, 2014). While informal learning settings have been shown to enhance 

scientific reasoning ability (Gerber, Cavallo, & Marek, 2001), these environments pose 
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difficulties for educators, as both student and teacher motivation toward learning 

objectives may differ from more formal settings (Kisiel, 2005; Lucas, 2000). While many 

studies of out-of-school time (OST) enrichment programs demonstrate some positive 

impacts across social and academic areas, these environments are associated with low 

student attendance, and difficulty implementing structured activities and tasks (Dynarski, 

James-Burdumy, Moore, Rosenberg, Deke, & Mansfield, 2004). Fostering CT skills 

through explicit instruction and supplemental activities during school hours may, 

therefore, be met with greater student engagement and learning outcomes. 

Although some aspects of CT can be taught to early elementary students, 

especially through the CS Unplugged initiatives that require little to no familiarity with 

computer code in the traditional sense, the middle school years are particularly important 

for students to develop and grow the cognitive and social skills needed for future 

educational endeavors, especially within the STEM fields (Tai, Liu, Maltese, & Fan, 

2006). One reason that many of the studies in the field of computer science education 

have focused on the middle school years (ages 11-13) is the notion that abstract thought 

emerges during this developmental period (Piaget, 1936). Being able to conceptualize 

information in an abstract way is a central concept in computer science and this idea is 

even captured in the very definition of computational thinking (CSTA, 2011). This is not 

to say that children below this age band are incapable of learning CT skills, and in fact 

there is evidence that some children as young as seven can benefit from learning about 

computational concepts (Li, 2010). In an exploratory case study Fessakis, Gouli, and 

Mavroudi (2013) used a series of Logo-based activities with kindergartners in tandem 

with an interactive whiteboard to input navigational commands for a ladybug sprite to 
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hide under a leaf. Results indicated that the children actively participated and enjoyed 

solving problems through planning and trial-and-error methods, and their mathematical 

skills related to direction and orientation seemed to improve through participation in the 

activities; however, the authors provided no quantitative measures to support their claims. 

It is, therefore, important for educators to consider introducing young children to the 

world of computer science through hands-on computerized and non-computerized lessons 

at an early age, and continue to foster the development of CT skills throughout early to 

middle childhood. 

Games and Game-Based Learning 

The most popular way in which proponents of computational thinking have set 

out to teach these skills to young learners is through designing games (Wu & Richards, 

2011).  The cognitive benefits of playing games was recognized long before computers 

became an integral part of daily life, as evidenced in Piaget’s (1951) work that explored 

the developmental importance of game play as a way for children to refine and apply 

their understanding of rules. As one of the founders of constructivism, Piaget viewed the 

construction of games one of the foremost methods of game play. Kafai and Resnick 

(1996) use the constructionism perspective to frame a discussion on the impact of 

computational technologies on children’s learning, education, and knowledge. 

Specifically, they focus on how creating computer games and other projects, as opposed 

to merely playing computer games, can influence how children learn through design. Gee 

(2003) wrote extensively about the potential of both playing and designing video games 

as an avenue to promote learning and literacy. He argued that giving students the chance 

to personalize their own game could be a powerful way to engage students, and instill 
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within them a sense of pride and accomplishment that facilitates learning. He went on to 

outline 36 educational principles that could be cultivated in the design and play of video 

games. Squire (2006) described how the experience of playing games affects the ways 

players think about history, physics, and academics in general. Furthermore, he argued 

that making games through computer programming activities would be an even more 

powerful way of affecting the ways in which players learn and think about the world. 

Squire (2006) has gone as far to say that traditional educational pedagogies should adjust 

the delivery of academic content to match the changing times; moreover, that engaging 

students to think critically about the world can and should be accomplished through 

gameplay and game design. 

Hayes and Games (2008) provide a review of the various novice-oriented 

computer software for designing and making games available at the time, as well as the 

instructional strategies intended to engage young learners in making games. The 

researchers separate lines of research into the following four themes: game creation as a 

way to teach programming tools or concepts, game creation as a way to bring more girls 

and women into the field of computer science, using games to teach academic content, 

and game creation to learn specifically about how games are made. 

The enormous success of the video game software industry in the 1990s, when 

software publishing companies grew to become some of the most successful businesses 

in history, changed the ways computers were used in the classroom (Cuban, 2001). In 

attempts to capitalize on youth’s fascination with video games, researchers in the field of 

computer science education began to develop more appealing interfaces with game-

making functionality to teach computer programming concepts. Soon, they found that 
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exposure to programming through an introductory, guided, game-based curriculum 

increased knowledge and confidence in programming concepts, which is an important 

factor for students to continue their computational explorations beyond the classroom or 

research setting (Al Bow, Austin, Edgington, Fajardo, Fishburn, Lara, Leutenegger, & 

Meyer, 2009). Nearly every study in the current review in some way used an aspect of 

computer game design or game-like activity as part of its instructional strategy to teach 

fundamental computer science concepts, partly due to the influence of Papert’s (1991) 

idea of constructionism. For a thorough review of the educational benefits of student-

created games, see Kafai and Burke’s (2016) synthesis of 55 studies in the K-12 

environment that summarizes and categorizes empirical endeavors across Brennan and 

Resnick’s (2012) operational definition of CT, i.e., computational concepts, 

computational strategies, and computational perspectives. 

Educators and researchers generally agree that youth may be able to gain valuable 

skills across a range of educational competencies through both game design and game 

play, but the development of CT skills, specifically through game design, is not purely 

individual pursuit, and in fact can be enhanced by encouraging or requiring youth to work 

collaboratively, and provide feedback regarding one another’s work. 

Peer Critique and Collaboration 

Involving peers in the development and critique of programming processes and 

products has been used as one way to increase learning of programming concepts. For 

example, paired programming has been a common practice in university settings, and has 

also been introduced into the K-12 environment as an instructional strategy to help 

students learn programming skills together (Werner, Hanks, & McDowell, 2004).  
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Peer feedback has also been linked to improved student outcomes. For example, 

Hwang, Hung, and Chen (2014) separated students into treatment and control groups 

differing in whether students received feedback from their peers about their projects. 

Students took a pre-test designed to measure background content knowledge, learning 

motivation, and problem solving skills before participating in a computer game 

development course. These 167 Taiwanese 6th grade students worked to develop 

computer games using Kodu, a software developed by Microsoft, as part of an 

environmental science unit on the effects of global warming. Fifty-minute long game 

design and development sessions were held once a week for ten weeks and students in the 

treatment group were allowed to give feedback to their peers on the enjoyment, 

appearance, completeness, accuracy, and relevance of their game design while students in 

the control group received no feedback from peers. At the end of the ten weeks, students 

took a post-test and the treatment group answered open-ended questions. Students in the 

treatment condition showed significantly greater ratings of learning achievement, 

problem solving skills, learning motivation, in-depth thinking, and creativity. The authors 

conclude that peer-based assessment can enhance that student’s learning achievements 

and problem solving skills. Also, students in the reviewing treatment group reported 

higher levels of enjoyment, which indicates that peer-based assessment can be used as a 

tool to engage students in game development activities. 

In another study, Su, Yang, Hwang, Huang, and Tern (2014) examined how peer 

feedback facilitated by a digital tool to make annotations to student projects in the 

Scratch programming environment, as well as differing pedagogical strategies, impacted 

problem solving and programming conceptual knowledge. Four classes of students 
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totaling 135 sixth grade Taiwanese students participated in two Scratch units over six 

weeks in various conditions of instructional strategies and differing levels of peer 

feedback. Results showed that students who critiqued other students’ annotations of their 

thoughts throughout the computer programming activities in Scratch combined with 

explicit instruction in solving programming problems in a stepwise manner showed 

increased understanding of programming concepts as measured by a criterion referenced, 

instructor-created test of programming conceptual knowledge that consisted of a 

combination of multiple choice and project-based items. 

Other more qualitative studies have also indicated that programming is learned 

best when it is learned in the context of a community environment where members are 

able to give and receive feedback on their programmed artifacts. For example, Baytak 

and Land (2011) and Werner, Denner, and Campe (2014) incorporated peer feedback and 

programming in pairs within their studies and reported that students demonstrated 

learning gains in the domains of computational thinking, and reported greater levels of 

understanding and enjoyment of programming-related activities. 

What Can Students Learn While Participating in Programming Activities? 

Programming Conceptual Knowledge 

The most obvious learning outcome of participating in any type of activity that 

engages individuals with core programming concepts would be an increase in knowledge 

of said concepts. A large number of studies have investigated whether young learners 

actually do learn about the fundamentals of computer science and the results generally 

support that some degree of programming conceptual knowledge is attained after 

engaging with computer programming tools. In one example, Maloney, Peppler, Kafai, 
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Resnick, and Rusk (2008) introduced Scratch in an urban community center located in an 

impoverished neighborhood in Los Angeles, CA. The authors qualitatively describe the 

results of a yearlong observation period accompanied by descriptive statistics regarding 

youth-created projects; however, there was no control group for comparison of learning 

outcomes of youth not engaging in computer programming activities. The researchers 

took a hands-off approach to teaching Scratch, choosing to make research assistants 

available to answer student’s questions rather than providing direct instruction on the 

functionality and features of Scratch. Although the presence of researchers in and of itself 

may have impacted youths’ behavior and motivation to learn Scratch, the authors found 

that a culture of computer programming seemed to emerge, and that by creating projects 

in Scratch, youth demonstrated understanding of core computer programming concepts. 

The study not only highlights the collaborative and creative nature of the Scratch 

environment, but also the supportive and assistive aspect of the community center in 

relation to initial interests in pursuing Scratch projects. The researchers’ assessment of 

programming knowledge, however, did not go beyond qualitative description so it 

remains unclear as to whether or not students actually understood the concepts they were 

using in their projects. 

In one study that investigated how children learned programming conceptual 

knowledge, Baytak and Land (2011) used computer game development as a peer tutoring 

experience to bolster fifth grade students’ computational thought processes. The 

researchers asked fifth graders to use Scratch to design computer games that were to be 

used to teach second grade students about environmental science. The study took place 

over the course of 21 sessions that included planning, design and development, and 
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testing phases. A science teacher was present during all sessions to answer questions, and 

students were encouraged to collaborate with one another. In order to assess students’ 

knowledge of programming concepts, the researchers coded command blocks of each 

student’s game into the following categories: statements, Boolean expressions, 

conditionals, loops, variables, threads, and events. The authors present narrative and case 

studies describing the student-created games and the game development process. They 

conclude that creating computer games within an academic context is a dynamic learning 

process that involves goal setting, information seeking, and problem solving through 

inter-student collaboration, and that a visually-based software environment (as opposed 

to a more traditional text-based programming environment) can help elementary students 

access and understand complex programming skills; however, the authors point out that 

the results were more exploratory and descriptive, rather than conclusive. 

While the above studies were more qualitative in nature, Denner, Werner, and 

Ortiz (2012) investigated computer games created by 6th grade girls in an after-school 

program over the course of three months by a mixture of quantitative and qualitative 

approaches to understand whether students who used various types of code actually 

learned the corresponding CT concepts. Each participant or pair of participants created 

several games using the Stagecast Creator programming software, a novice-oriented, 

graphically-based, introductory programming environment with functions corresponding 

to foundational CT concepts and algorithmic thinking, e.g., objects and inheritance, 

methods, events, and code documentation. In order to determine the percentage of games 

that included various aspects of CT concepts, the researchers analyzed each game across 

24 computer-code categories separated into three broad computer science competencies, 
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i.e., programming, code organization and documentation, and designing for usability. 

Results indicated that the youth did not use more complex programming features while 

creating their games, despite qualitative descriptions of high interest in the activity. The 

authors conclude that additional instructional support is needed in order to engage 

children of this age in more complex coding methodology. Whether these youth, or 

others engaged in similar computer programming activities, actually learned the CT skills 

they demonstrated by the incorporation of specific codes and sequences in their projects 

is subject for debate, however. 

In a more recent study offering further mixed evidence to support the notion that 

although students may demonstrate interest, engagement, and completion of computer 

programming tasks, they may not necessarily understand the underlying concepts and be 

able to transfer this knowledge to a novel environment. Grover, Pea, and Cooper (2015) 

investigated whether student knowledge of algorithmic concepts, i.e., serial execution, 

looping constructs, and conditional logic, transferred to text-based programming 

languages after using Scratch in a design-based curriculum using both a face-to-face and 

blended classroom with children ranging in age from 11 to 14 years in a public school 

setting. The researchers used weekly quizzes and a pre/post-summative test to evaluate 

whether students were able to understand programming concepts and found that student 

knowledge of basic algorithmic flow of control in computational solutions was increased 

from pre to post-test; however, students demonstrated more difficulty understanding 

loops and variables. The knowledge transfer test was conducted in a novel, text-based 

programming language and focused heavily on loops and variables; thus, student 

performance did not show substantial understanding of these concepts. Additionally, the 
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researchers noted that student performance on programming conceptual knowledge tests 

did not differ significantly whether students were in face-to-face classroom or blended 

classroom condition. 

Problem Solving Skills 

Extensive research and theorizing about the relationship of problem solving to 

cognition suggests that the process of solving problems is a fundamental characteristic of 

thinking (Mayer, 1977; Sternberg, 1994), and although discussion of this research is 

beyond the scope of this review, problem solving can generally be broken down into the 

following domains: knowledge representation, conceptual categorization, deductive 

reasoning, and inductive reasoning (Sternberg, 1994). One of the most widely touted 

claims about participation in computer programming is that it has the potential to 

improve general problem solving abilities. The supposition is that instructing a computer 

program to enact a set of rules to achieve a desired function is in itself a problem solving 

process, and that engaging in such activities can generalize more broadly to enhance 

problem solving ability. 

In an early attempt to answer the question as to whether computer programming 

positively influenced cognitive outcomes, which served as an over-arching category and 

primarily included various measures of problem solving skills, a meta-analysis conducted 

by Liao and Bright (1991) analyzed the learning outcomes of 65 studies involving 

computer programming in education, of which 89 percent reported positive effect sizes, 

resulting in an overall moderate grand mean effect size (0.41). One issue with this 

analysis, as is the case with all meta-analyses, was that the authors considered the 

assortment of student learning measures in the same way, i.e., as uniformly standard 
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measures of cognitive skill determined by tests at the end of programming instruction. 

Although they concluded that computer programming can lead to improved student 

learning, mainly in reasoning skills, logical thinking, planning skills, and general problem 

solving skills, a more thorough understanding of how the studies included in the analysis 

measured these cognitive outcomes, and their validity is warranted in order to make such 

claims. 

Some studies have looked at incorporating explicit modeling or teaching of 

problem solving strategies directly could affect their experiences in computer 

programming. For example, Akcaoglu and Koehler (2014) chose the Kodu programming 

environment in an after-school setting and used a computer game-design curriculum that 

was paired with instruction that explicitly taught the steps of problem solving as 

described in previous literature the following four-step process: representing, i.e., 

understanding the problem, planning, i.e., devising a solution by decomposing the 

problem, executing, i.e., putting the plan into action, and evaluating, i.e., checking to see 

if the plan resulted in achieving the goal (Jonassen, 2004; Polya, 1957). The researchers 

measured performance on questions from the Program for International Student 

Assessment (PISA) designed to measure students’ skill at solving the following three 

problem types: systems analysis, decision-making, and troubleshooting. Results indicated 

that participants in the experimental group significantly outperformed those in the control 

group who did not receive the game-based design instruction, leading them to conclude 

that game-design through computer programming can improve problem solving skills. 

There have been a number of studies in the field of computer science and 

education investigating whether or not problem solving skills are indeed enhanced 
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through computer programming activities, and while there is evidence to support the 

claim, questions remain for how problem solving is measured, and how to best facilitate 

learning. To understand how computer programming activities relate to problem solving 

skills, it is important to keep in mind that in order to be successful with the former, a 

prerequisite skill level in the latter is necessary. Without sufficient scaffolding in the 

problem solving process, learners may not be able to make the conceptual leaps needed in 

key CS areas and CT skills, and thus, experience success with their creations. In this way, 

a bidirectional relationship may exist between problem solving abilities and computer 

programming, and by teaching students about how to think about thinking, they may be 

better able to solve problems, and achieve their goals in computer programming activities 

more successfully. 

Metacognitive Skills 

Metacognition is a higher-order thinking skill that is best described as thinking 

about thinking (Flavell, 1976). The most common method of measuring metacognitive 

skills in research is through a think- aloud technique in which individuals describe their 

thought processes verbally while completing a task or solving a problem. Clements and 

Nastasi (1999) used Sternberg’s (1985) componential framework of cognition to 

qualitatively evaluate how the Logo programming language affected children’s 

metacognition across a number of studies. They concluded that participating in Logo 

programming activities beneficially affected children’s metacognitive thought processes, 

but emphasized the interaction of socio-developmental factors underlying metacognition 

on both a conscious and unconscious level. The authors call for a closer examination of 
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the evolution of metacognitive thought as it relates to programming in the Logo 

environment. 

More recently, Allsop (2015) studied the way students in the UK thought 

throughout their programming experiences using a thought-mapping technique. The study 

included 30 ten to eleven-year-old children with one-hour prior programming experience 

in Scratch. Participants were first asked to diagram on a sheet of paper how they learn in 

any subject before they began a one hour per week computer game design course using 

the Alice programming environment. They were encouraged to update their “thinking 

maps” whenever they felt like it, and at the conclusion of the course, they were again 

asked to draw another thinking map. Results showed that children’s thinking maps 

became more continuous and “circular” during and after participation in the game design 

course, reflecting a trial-and-error, iterative approach to game creation and thinking. 

While methodological issues permeate the measurement of metacognitive thought 

processes, evidence seems to suggest that programming can positively affect the way in 

which chilren think about thinking. 

Academic Skills and Content 

Many of the early studies involving the relationship of academic skills to 

computer programming focused on mathematical thinking skills due to the intrinsic 

nature of the two. For example, Feurzig (1986) studied how Logo could be used to 

enhance student understanding of the algebraic concepts of variables and functions. 

Similarly, Noss (1986, 1987) examined how children learned algebraic and geometric 

concepts while programming in Logo. Olive (1991) analyzed text files of 30 ninth grade 

students’ work in Logo along three theoretical perspectives of understanding geometrical 
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relations and found that successful programming in Logo generally led to increased 

understanding of geometrical relations across the various taxonomic levels of the 

theoretical perspectives used in the analysis. Kafai (1995) investigated the ways in which 

fractions could be learned by deliberately incorporating them in student-designed games 

in the Logo environment. 

More recently, Schanzer, Fisler, and Krishnamurthi (2013) developed the 

Bootstrap curriculum specifically to improve middle and high-school students’ 

knowledge of algebraic concepts and coordinate geometry through guided game-making 

activities. Following the development of the Bootstrap curriculum, this group of 

researchers introduced the curriculum to over 500 students across states and cities in 

America from 2008-2012. In 2015, they looked at pre/post-test results of algebra 

problems for students who either completed the Bootstrap program (n = 123) or were in a 

control group class (n = 26) and compared their performance on word problems taken 

from the algebra section of the Massachusetts 8th grade standardized test in math. The 

programming syntax of the Bootstrap curriculum mimicked the manner in which 

mathematical functions were laid out in the selected assessment, e.g., f(x) = x + 5, and 

activities connected the computer code to visual computer-based models representing 

mathematic principles, e.g., motion, variables, and geometry. Students who had training 

through the Bootstrap program performed significantly higher than students who did not 

partake in the training (Schanzer, Fisler, Krishnamurthi, & Felleisen, 2015). 

While the Bootstrap curriculum seems to provide evidence that by directly 

incorporating or structuring lessons and activities around mathematic concept areas, 

mathematical ability is more dramatically improved, Columbian researchers Calao, 
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Moreno-León, Correa, and Robles (2015) analyzed students’ math performance after 

programming in Scratch. They used a pre/post-test design incorporating an experimental 

and control group of 42 sixth grade students who either took part in Scratch programming 

activities over the span of three months, or attended their regularly scheduled math 

classes for the same time period. The researchers used a 16 item rating scale based on 

national standards put forth by the Ministry of Education of Columbia across four areas –

modeling, reasoning, problem solving, and exercising –as their dependent variable. 

Students in the experimental group obtained significantly higher ratings of mathematical 

processing on all rated areas measured, showing large differences in the area of 

exercising, i.e., algorithmic thinking, while ratings of the control group declined across 

three out of the four areas. Although this study did not include any standard measure of 

student mathematical ability, and it was unclear the amount of computer programming 

time students received over the course of the three-month-long study, its design and 

inclusion of a comparison group that had general math instruction instead of Scratch 

programming provides further evidence that programming can aid in advancing student 

understanding and application of mathematical concepts. 

Mathematics has been the primarily targeted academic skill area studied in 

relation to computer programming activities in education; however, there have been some 

studies investigating how other academic skill areas can be affected by incorporating 

computer programming activities in instruction (Baytak & Land, 2011; Hwang, Hung, & 

Chen, 2014). One such study conducted by Khalili, Sheridan, Williams, Clark, and 

Stegman, (2011) used the Game Maker software to create two and three-dimensional 

games during a summer program in an underserved American community. Sixteen high 
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school students spent two to three hours per day for four weeks in groups of four 

designing games based on the Federation of American Scientists’ (FAS) “Immune 

Attack” educational science game to explain concepts in neurobiology with assistance 

from a lead classroom instructor knowledgeable in game programming, three college age 

mentors, and electronic communication with a scientist at the FAS. The researchers used 

interviews with students, classroom observations of the students at various points in the 

game design process, and email communication with the science subject matter expert 

from the FAS to evaluate student learning throughout the program. The authors analyzed 

these data and formed thematic conclusions about student learning indicating that 

students questioned their own knowledge about biology and voluntarily sought out 

answers to their questions, as well as demonstrated gains in their ability to explain and 

articulate complex scientific processes previously unknown to them. Although this study 

is qualitative in nature, and was composed of high school students, it highlights the deep 

level of understanding that can be achieved for specific academic content through 

programming activities rooted in game making. 

In relatively rare study investigating how creating with computers could affect 

children’s reading and writing skills, Owston, Wideman, Ronda, and Brown (2009) 

provided classroom instruction that incorporated the use of a game development program 

called Education Games Central in a large randomized control trial of 18 fourth grade 

classrooms. The researchers investigated whether creating games on computers could 

improve basic literacy skills when incorporated into regular classroom instruction across 

curricular units. Education Games Central draws upon the format of a variety of 

traditional board games, e.g., tic-tac-toe, and prompts users to generate questions related 
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to predetermined curricular objectives in order to move through the game. A standardized 

test of basic literacy skills with two forms (A and B) in a pre/post-test format, and an 

adapted version of a standardized test of written language as a post-test served as 

dependent variables. They found that students in experimental conditions performed 

significantly better than students in control groups on a subtest of the writing skills 

assessment measuring logical sentence construction that asked students to correct an 

illogical sentence; however, the effect was relatively small (η" = .031). Qualitative 

observations and interviews with teachers showed that their perception of student 

learning in literacy improved more in experimental groups, and that teachers thought the 

skills learned in classes that used game development activities would be more likely to be 

retained by students. Although the programming activities students participated in 

throughout this study differ markedly from other literature in that students were not asked 

to construct computer code, but rather generate questions based on curricular content to 

be incorporated into a larger game program, it nonetheless provides some of the first 

quantitative evidence to suggest that writing skills can improve through participation in 

such activities. 

Creative Thinking Skills 

The ability to think creatively is a crucial part of the human condition, and 

necessary to many aspects of effective problem solving and design processes. Measuring 

creativity, however, is inherently difficult as it involves degrees of situational spontaneity 

not often captured in a standardized way. One way to measure creativity that researchers 

around the world have used for many years is the Torrance Tests of Creative Thinking 

(TTCT) (Torrance, 1966). Rooted in Guilford (1967) and Torrance’s (1969) 
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conceptualization of creativity, the TTCT measures divergent production characterized 

by fluency (the production of ideas), flexibility (the production of different ideational 

categories), originality (the production of unusual ideas), and elaboration (the persistency 

of introducing details to products) (Almeida, Prieto, Ferrando, Oliveira, & Ferrándiz, 

2008). Almeida et al. (2008) used factor analysis to evaluate the construct validity of the 

TTCT in three large sample empirical studies from Spain and Portugal and found 

inconsistent factor structures that did not align with purported facets of divergent thinking 

claimed to be measured by the TTCT. Leandro, Lola, Mercedes, Emma, and Carmen 

(2008) have even posed questions to the validity of the TTCT’s evaluation of creativity as 

a construct. Nonetheless, researchers have often turned to this measure as a valid way to 

measure creativity in research settings. 

Clements (1986) looked specifically at how programming in Logo affected a 

variety of cognitive outcomes, and included the TTCT as a measure of creativity. Groups 

of first and third grade students worked in pairs twice per week across 22 weeks either on 

sequenced activities in Logo, or drill-and-practice educational software activities 

designed to teach academic content. The control group did not participate in computer 

lessons and attended class as usual. Results indicated that both first and third grade 

students in the Logo condition achieved significantly higher gains on the TTCT, 

specifically in the areas of originality and elaboration. The researcher notes, however, 

that the generalizability of the findings should be interpreted cautiously as students 

participating in the study had access to a dedicated and knowledgeable instructor 

throughout each training session. Clements (1986) does point out that the observed gains 

in cognitive outcomes could be attributed to the types of activities students engaged in 
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while using the computer rather than merely using the computer itself due to the inclusion 

of an experimental condition that involved computer instruction, but not programming. 

A more recent research effort specifically to focus on creative problem solving as 

it relates to computer programming was conducted by South Korean researchers Kim, 

Chung, and Yu (2013), who used a sequence of training modules in the Scratch 

programming environment designed to promote real-world creative problem solving 

skills through explicit instruction to solve programming problems within a six-step 

problem solving framework designed to promote imagination, creation, collaboration, 

and reflection by using various commands to program coded sequences. Both typically 

developing adolescents in South Korea (n = 119), and those identified as gifted (n = 30), 

were randomly assigned to treatment and control groups followed by 16 weeks of 

training sessions in Scratch. The researchers developed a synthetic creative problem 

solving test (SCPST) based on previous work by the Korean Educational Development 

Institute (ED.) (Cho, Jang, Jung, Lim, & Park, 2002) to use as their primary measure of 

student creativity. The test includes word problems that prompt students to develop 

creative solutions to problems, e.g., 

Now the world is making an effort to protect depleting energy resources. 
Bicycles are especially popular because they do not consume energy 
resources and emit exhaust. What would you do if you could improve the 
disadvantages of the current bike? Let’s write as much as possible about 
an idea to upgrade anything that is inconvenient. (Kim, Chung, & Yu, 
2013, pp. 177) 

They validated the test by pre-testing a separate group of students with the measure and 

comparing correlations of test scores to student scores on other instruments claiming to 

measure creativity, e.g., the TTCT. The test correlated moderately with the TTCT Figural 

test (r = .62), but there was very little correlation with the TTCT Verbal test (r = -.48). 
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The authors explained this low correlation with the TTCT Verbal by arguing that because 

the content of the questions was science-related, only logical answers received a score; 

thus impacting the way scores are calculated and compared across measures. The authors 

thus concluded that the SCPST was a valid measure of divergent thinking, logical 

thinking, and scientific problem solving ability and scored student responses the 

following five dimensions: fluency, elaboration, sensitivity, openness, and flexibility. 

Results showed significant increases in digital fluency, which was defined by the 

researchers as the ability to solve real life problems creatively using digital technology, 

and originality. The researchers concluded that computer programming training can be 

used to solve realistic problems and can enhance creative problem solving skills that 

prove useful in many facets of life. 

Assessing Learning in Computational Thinking 

While there appears to be evidence that computer programming can improve 

various cognitive and academic skills, the assessment of CT skills themselves poses 

significant challenges, and is an area in which ongoing development in the field is taking 

place. A variety of procedures and assessment techniques have been used in the literature 

to assess student learning and development of CT skills. These range from think-aloud 

interviews with students about their experiences and projects (Hwang, Hung, & Chen, 

2014; Khalili, Sheridan, Williams, Clark, & Stegman, 2011), to analyses of the frequency 

of types of code incorporated into projects (Baytak & Land, 2011; Denner, Werner, & 

Ortiz, 2012; Werner, Denner, & Campe, 2014), interactive debugging tasks (Werner, 

Denner, Campe, & Kawamoto, 2012; Su et al., 2014), and multiple choice assessments 

(Grover, Pea, & Cooper, 2015; Straw, Bamford, & Styles, 2017). Some studies use 
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qualitative descriptions or case studies based on observations to describe how and what 

students learn during the course of digital media creation, with a process-oriented, 

descriptive, and exploratory approach (Fessakis, Gouli, & Mavroudi , 2013; Kafai, 

Peppler, & Chiu, 2007; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). Each 

assessment method has its unique pros and cons, selected according to the focus of the 

investigation. What remains clear, however, is that a valid and reliable CT assessment 

remains to be developed. 

Adding to the growing need to define how to evaluate CT skills, Brennan and 

Resnick (2012) not only outline a theoretical model to understand how to conceptualize 

computational thinking, but also summarize three ways in which researchers and 

educators can assess student learning, specifically in Scratch, and the associated pros and 

cons for each. The first approach discussed utilizes a visual analysis of Scratch projects 

or portfolios of using a tool called a Scrape visualization developed by researchers at the 

College of New Jersey (Wolz, Hallberg, & Taylor, 2011). A Scrape visualization displays 

blocks of code used by a Scratch user arranged in rows and color coded according to the 

type of command block, with columns representing individual Scratch projects. This type 

of analysis allows researchers to quickly assess an individual’s usage of various types of 

code, as well as types of code that were not utilized at all. Furthermore, researchers are 

able to inspect the evolution of a Scratch user’s use of code over time. In one example of 

this type of assessment technique, Chang, Tsai, and Chin (2017) recently developed the 

Dr. Scratch “web crawler” tool intended for analyzing Scratch users’ projects according 

to seven CT principles (flow control, data representation, abstraction, user interactivity, 

synchronization, parallelism, and logic), assigning a score for each CT skill area, and 
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providing data on student usage of various types of code. This type of web-based analytic 

tool produces data about Scratch users’ projects quickly and efficiently, and could be 

useful for instructors and researchers alike. 

As with all product-oriented analyses of computational thinking, one limitation to 

these types of analysis is that usage of code does not necessarily denote understanding of 

the code. The second approach discussed by Brennan and Resnick (2012) involves 

artifact-based interviews to evaluate individuals’ conceptual understanding of how and 

why their projects functioned. This type of analysis is more labor intensive, and thus less 

conducive to large-scale research efforts; however, it allows researchers to more fully 

understand whether individuals truly grasped the computational concepts that enabled 

their projects to function. A third approach, design scenarios, presents users with pre-

designed Scratch projects and asks them to explain what the project does, describe how it 

could be altered and expanded, correct any mistakes, and modify the project by adding a 

new element. This approach to assessing CT skills allows researchers to systematically 

study how computational concepts and practices change over time, and enables users to 

demonstrate their knowledge in the moment rather than recalling and verbalizing an 

explanation at a later time. Variations of these three lines of assessing CT presented by 

Brennan and Resnick (2012) have been used across studies not only in with Scratch, but 

also in other novice-oriented programming environments. 

One example of an interactive task-based assessment of CT skills is the “Fairy 

Assessment” developed by Werner, Denner, Campe, and Kawamoto (2012) for the Alice 

programming environment. The Fairy Assessment was designed to measure two 

computational thinking principles identified by the Carnegie Mellon Center for 
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Computational Thinking, i.e., thinking algorithmically, and making effective use of 

abstraction and modeling. The assessment uses the Alice programming environment, 

which is an environment especially conducive to story-based games, to independently 

assess whether students could execute programming tasks that were designed to represent 

knowledge of the two CT skills under examination. Successful completion of the task 

presumably relates to the underlying CT skills embedded within the task, suggesting that 

this type of assessment is more thorough than simply documenting the types of code 

contained within students’ projects, and the methodology can be applied similarly to 

other programming environments. 

To further understand whether students actually learned CT skills and could 

demonstrate their application in a novel environment, i.e., transfer, Grover, Pea, and 

Cooper (2015) measured how transfer of CT skills from the Scratch programming 

environment to a text-based programming environment, e.g., samples of Pascal/Java-like 

code borrowed from past AP exams in computer science. The preparation for future 

learning (PFL) exam was administered to groups of students who had participated in a 

structured Scratch coding class to see if their knowledge of Scratch could be applied to a 

novel programming environment. The researchers explained and provided the syntax of 

the new programming language before administering the test, which occurred at the end 

of a seven-week Scratch curriculum. Results indicated that students were able to apply 

some computational concepts, but struggled with applying concepts of loops and 

variables in this new environment. The authors conclude that relatively weak student 

performance on the PFL test, which included a large portion of items that required 

understanding of loops and variables (concepts that students already had difficulty with in 
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the Scratch environment), focused too much on concepts that were not explicitly taught in 

the Scratch curriculum selected for the study. The results of this study may be somewhat 

disheartening for researchers hoping to demonstrate that engagement in novice-oriented 

visually based programming languages like Scratch could be applied in more prevalent 

text-based programming languages; however, students were able to transfer many ideas 

learned in the Scratch curriculum to an environment in which they had extremely limited 

experience. 

An innovative analytic technique has recently been developed to understand on a 

micro level how students use and modify their Scratch projects (Fields, Quirke, Amely, & 

Maughan, 2016; Fields, Quirke, Horton, Maughan, Velasquez, Amely, & Pantic, 2016; 

Pantic, Fields, & Quirke, 2016). The technique utilizes large amounts of JSON files, 

which are text-based versions of Scratch projects, collected through the backend of the 

Scratch programming environment in combination with front-end Scratch projects, 

observations, and interviews to understand how students used various code blocks during 

their work in the Scratch environment. The technique involves capturing snapshots of the 

code blocks being used by students by saving JSON files every two minutes, or when 

students switch from editing costumes, backgrounds, or sound back into coding. The 

researchers developed a parser to analyze how students used various categories of code 

within and across training sessions, and combined these data with interviews and 

observations to better understand how students used code and understood computational 

concepts. The results of the researchers’ efforts to more fully comprehend the ways in 

which students use computational practices, e.g., remixing and debugging, and grasp 

computational concepts shows promise and will undoubtedly help researchers and 
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computer science educators alike to develop new strategies for developing more effective 

lessons, and evaluate student learning. 

Finally, in a large-scale randomized control trial of coding clubs with 317 

students in 21 schools in the UK, Straw, Bamford, and Styles (2017), working with the 

Raspberry Pi foundation, utilized a unique measure of CT skills called the Bebras 

Challenge, which is an online timed, 15-item set of scenarios related to CT areas as 

conceptualized by Selby and Woollard’s (2013), to measure whether nine to ten-year-old 

students learned CT skills after participating in a year-long coding club that was 

composed of a mixture of Scratch, HTML/CSS, and Python activities and lessons. The 

Bebras Challenge tasks involve no prior knowledge of programming language, so they 

were suitable for a post-test in the control group. Items consist of multiple choice 

responses, and students can sometimes interact with item response choices by trial-and-

error, which can be akin to testing or debugging. For example, students can test out 

whether their sequences of directional arrows will get an object through a maze. This set 

of CT-oriented tasks is part of an ongoing international competition originating in 

Lithuiania in 2004 to better understand students’ ability to think computationally, and 

promote the field of CS (Román-González, Pérez-González, & Jiménez-Fernández, 

2017). In 2015, 1.3 million students from 38 countries in the 2015 challenge (Izu, Mirolo, 

Settle, Mannila, & Stupurienė, 2017). Students who participated in code clubs in the 

Straw, Bamford, and Styles (2017) study did not show a measurable improvement in 

computational thinking as measured by the Bebras Challenge CT assessment when 

compared to control students who did not attend code clubs, but they did show significant 

improvements in their skills within Scratch, HTML/CSS, and Python. 
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State of the Field 

From the above review of the literature, it is clear that participation in computer 

programming activities in a variety of programming environments and pedagogical 

strategies can impact learning not only in the domain of computational thinking, but also 

in higher-level cognitive abilities (problem solving and metacognition), specific academic 

content, (science, math, and literacy), and creative thinking abilities. The ways in which 

computers have been used in the classroom have undergone significant changes over the 

past 30 years, and a return to the fundamentals of computer programming as an important 

21st century skill is well underway across primary and secondary classrooms around the 

world. While researchers in the 1980s and 1990s studied thought processes associated 

with computer programming in educational environments, and found some evidence for 

learning gains, their results lacked an underlying conceptual framework to synthesize and 

make sense of what children learned and the manner in which they learned. The relatively 

recent emergence of the term computational thinking is a way to operationalize the ways 

in which children learn computer science concepts and practices. Translating the findings 

of early computer science education researchers within the CT paradigm has been 

suggested as an important endeavor to inform current research and practice (Grover & 

Pea, 2013). 

The assessment of CT is also an area that continues to develop as researchers 

further refine the definition of what it means to think computationally, and create new 

ways to evaluate what and how students learn while they code. Despite some evidence 

that highly valued cognitive skills and academic knowledge can be improved through 

computer programming activities, questions still remain regarding how educators can 
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best support the development of computational thinking in the school environment. The 

focus on improving traditionally valued academic competencies serve as an obstacle for 

educators, policymakers, and researchers to overcome in order to successfully integrate 

coding in the classroom. Movements to create clearly outlined standards across age 

ranges and content areas for the field of computer science, and train teachers to integrate 

computational thinking activities and computer science lessons to teach specific 

curricular content is underway; however, several barriers exist that have slowed the 

integration of computer science into general education. These include the perceived 

difficulty of computer science principles by general education teachers, lack of school 

resources (space, finances), and administrative focus on improving core academic 

performance. Occupational competencies related to computer science and information 

technology skills are in high demand, and therefore, it is more important than ever to 

provide high quality empirical evidence to understand whether providing students with 

the opportunity to develop computational thinking competencies may impact other areas 

of their academic performance, so that administrators and teachers alike may be more 

likely to adopt CT activities into their curricular content. 
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CHAPTER 3 

METHODS 

The current study aimed to shed light on the relationship between computer 

programming activities, problem solving ability, academic achievement, and creative 

thinking in ten to fourteen-year-old children participating over summer educational 

programming at a public charter school in an urban school in the mid-Atlantic region of 

the United States. Youths participated in Scratch-based computer programming activities 

following a semi-structured set of lessons, led by an instructor with experience in 

education and computer science. The first two days of the study consisted of individual 

and group assessments for all participants in the study. Then, two sequential classes of 

participants (henceforth referred to as experimental and control groups) were provided 

instruction, with a second round of assessments occurring after the experimental group 

ended Scratch lessons; this portion of the study constituted the controlled trial phase. 

Finally, a third round of assessments occurred after the control group had completed 

Scratch lessons. 

Participants 

 The partnering school was selected to participate in the study primarily because 

the school offered a summer-long day-camp program open to all students, but secondarily 

because the student demographic represents a traditionally underserved population. 

Youth attending the summer programming were provided with an explanation of the 

study’s procedures, and the potential risks and benefits to their participation individually 

by the primary student investigator. Families of youth who assented to participating in the 

study then met individually with me to go into more detail about the study’s details over 
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the course of a routine summer enrollment school meeting. Parents who were unavailable 

to meet in person were sent home consent forms with contact information for myself and 

the principal investigator. There were two youth who did not assent to participate, and 

two who began the study but changed their mind about participating after beginning 

instruction for one or two days. Upon completion of the study, all participant 

assessments, as well as any other identifying documents collected throughout the study, 

were de-identified and participants were assigned a random two-digit number. 

In total, there were 24 youth who participated in any aspect of the study; however, 

some youth’s attendance was such that they only participated in the initial assessment 

portion of the study (n = 6), or for less than or equal to half of the instructional time (n = 

5). Five boys and seven girls comprised the experimental group, while eight boys and 

four girls comprised the control group. Youth ranged from ten to fourteen years-old, with 

an average age of 11.5 years-old (11.63 in the experimental group, and 11.38 in the 

control group). All participants had just completed their respective grades, and there were 

five fourth graders, two fifth graders, four sixth graders, and one seventh grader in the 

experimental group; while there were four fourth graders, five fifth graders, two sixth 

graders, and one seventh grader in the control group. There were four participants who 

received special education services in the area of learning support, with two of these 

youth in both the experimental and control groups. 

The lead computer science educator was recruited through email postings across a 

variety of listservs related to computer science education. She received a Bachelor’s of 

Business Administration in Management Information Systems and Accounting from a 

State University in 2012, and completed a Full Stack Web Developer Online Program in 
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2017, prior to the study’s start date. She had extensive field experience working in 

healthcare system implementation, developing training materials and lesson facilitation, 

and building basic websites and apps. In addition, she had previously used the Scratch 

programming environment while serving in a volunteer capacity with middle school 

students for Girls Who Code, and Tech Girlz –two non-profit organizations dedicated to 

STEM education for young women in the area. Prior to the study’s start date, I met with 

her to discuss her experiences and interest in the study, and after she agreed to participate 

in the study, provided her with the tentative lesson plan and schedule for curriculum 

selected for the study. She independently reviewed and completed the lessons to 

familiarize herself with all the nuances and details, and participated in a follow-up 

troubleshooting meeting to resolve any anticipated difficulties before classes began. She 

acted as lead instructor throughout the duration of the study, while I supported her with 

behavior management in the classroom, and lesson planning. The partnering school also 

officially brought her on as a summer programming educator to provide financial 

reimbursement for her time. 

Graduate research assistants studying the field of School Psychology were 

recruited via electronic postings at Temple University in the winter and spring of 2017 to 

conduct individually-administered standardized assessments of problem solving abilities 

and math achievement with participating youth. A total of five research assistants worked 

as field assessors throughout the duration of the study. Group training sessions were held 

in the spring of 2017 to introduce assistants to each of the selected measures of the study, 

and also to detail alterations to standardized administration for one of the assessments. 

Follow-up observed testing sessions were held with each research assistant, with myself 
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as a mock examinee making both common and unusual responses in order to ensure 

assistants were prepared for the diversity of potential participant responses. A standard 

checklist provided by the publisher of the Woodcock Johnson Tests of Cognitive 

Abilities, Fourth Edition, was used to ensure proper administration of this assessment. 

Assessors were provided with a physical and digital copy of changes to standardized 

administration of this assessment to further reduce the likelihood of administration error. 

Each assistant reached administrative proficiency for reliable and valid administration for 

the assessments selected for the study. 

Another group of three research assistants (two graduate students and one 

undergraduate student) were recruited in the winter of 2018 to assist with assessing 

creative thinking and creative problem solving through electronic postings on various 

listservs for graduate students in the College of Education at Temple University and the 

Computer Science Teachers Association, Philadelphia Chapter. The responding research 

assistants shared a commonality in that they had prerequisite interest and knowledge of 

creativity research and cognitive assessment in a collegiate setting, thus satisfying criteria 

to be considered quasi-experts (Kaufman & Baer, 2012). One of the research assistants 

was an advanced doctoral candidate at the College of Education at Temple University 

and a high school CS teacher. Another assistant was a Masters level graduate student 

with knowledge and experience in the field of assessment of learning, also from the 

College of Education at Temple University. The undergraduate research assistant was a 

senior studying Psychology at a nearby university who was recommended as a qualified 

candidate to act as a research assistant by his neuropsychology course instructor. 
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The recruitment email message contained brief details about the study and the role 

of the assistants, in addition to a digital copy of Amabile’s (1982) article describing the 

theoretical framework and process of the assessment method. A conference call was 

subsequently held to provide an overview of the study, review the assessment method and 

procedures, and ensure each research assistant was provided with uniform training. 

Research assistants (raters) received and returned their assessment packets in-person or 

through the mail, with individual participant responses arranged in a random order but 

grouped according to the assessments corresponding time point, i.e., pre/post. Two of the 

research assistants provided ratings on the standard, sequential presentation of the items 

(1, 2, 3, 4), while one of the research assistants provided ratings on an altered 

presentation of items (3, 4, 1, 2). This decision was made to control for any order effects. 

Packets also included pre-populated rating forms, and an additional hard copy of the 

assessment procedures. Assistants were instructed not to communicate with one another 

about their ratings. 

Design 

 Due to the scheduling conflicts that would have arisen by randomizing children 

enrolled in the participating school’s program purely for study purposes, participants 

were divided into an experimental and control group to accommodate previously planned 

camp activities and trips. A total of 12 children were assigned to both the experimental 

and control groups; however, some children in the control group either chose not to 

continue their participation in the computer class (n = 2), or did not attend any of the 

instructional days for unknown reasons (n =3). Assessment data for these youth were, 

therefore, incomplete. Youth in the experimental group completed the computer coding 
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class first, while those in the control group attended regularly scheduled daily activities 

along with other summer camp children not enrolled in the study. Youth in the control 

group then completed the computer coding class while those in the experimental group 

attended regularly scheduled daily activities along with other summer camp attendees not 

enrolled in the study. The decision to incorporate both experimental and control groups in 

the computer class over the course of the study was made in order to comply with ethical 

principles, and general best practice of equity in research; moreover, the potential 

educational benefit of participation in the computer course was the same across both 

experimental and control groups throughout the course of the study. The planned delayed 

treatement control trial experimental design was intended to allow for strong conclusions 

to be made regarding the efficacy of the computer class on cognitive and academic 

variables (Chambless & Hollon, 1998). The study also incorporated a pretest-posttest 

design element such that children in both the experimental and control groups completed 

all measures before beginning the computer class and after completing the class. 

Figure 3.1 graphically depicts the design of the study with the associated 

measures that were administered along the various time points in the study. In order to 

preserve the psychometric properties of the standardized measures selected for the study 

(WJ-IV CF and KTEA-3 MCA), it was only possible to administer these measures at two 

time points; consequently, the control trial component of the study took place between 

time points one (T1) and two (T2), and also included the CPS assessments. In order to 

measure changes in participant knowledge of computer programming concepts, each 

group was assessed for programming conceptual knowledge prior to beginning the class 

(T1), and again upon completion (T2 for experimental group and T3 for control group). 
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The decision to administer both the CPS and PCK group assessments to youth in both 

groups at the start date of the study was made to increase the internal validity of the study 

by preventing the transmission of assessment content between children in experimental 

and control conditions during regularly scheduled summer programming. The assessment 

of programming conceptual knowledge, thus, represents a more traditional pretest-

posttest experimental design, specifically measuring participant changes in programming 

conceptual knowledge after participating in computer programming activities, but not 

compared to a control group. 
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Note: WJ-IV CF1 & 2: Woodcock Johnson Tests of Cognitive Abilities, Fourth Edition - 
Concept Formation, pre and post-test; KTEA A &B: Kaufman Tests of Educational 
Achievement, Third Edition - Mathematical Concepts and Applications, Forms A and B; 
PCK1 & 2: Assessment of Programming Conceptual Knowledge, pre and post-test; CPS1 & 

2: Assessment of Creative Problem Solving, Pre and Post-test; Type T: Type-T 
Personality Questionnaire; CUQ: Computer Usage Questionnaire. 
 

Figure 3.1. Experimental Design and Measures 
 

Measures 

A variety of measures were used to assess problem solving ability, academic 

achievement, programming conceptual knowledge, prior programming experience and 

computer usage, and creative problem solving. In addition to direct individual and group 

assessments, the partnering school provided each child’s most recent Pennsylvania 

System of School Assessment (PSSA) scores in English and Language arts, and Math. 

Scaled PSSA scores for each area were collected and used in data analysis. 
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To gauge participant levels of problem solving ability, an adapted version of the 

Concept Formation subtest of the Woodcock-Johnson Tests of Cognitive Abilities, 

Fourth Edition (WJ-IV) (Schrank, McGrew, & Mather, 2014) was developed to 

accommodate a two time-point administration that did not consist of identical items. The 

WJ-IV Concept Formation test is a measure of inductive reasoning, i.e., the ability to 

observe a phenomenon and discover the underlying principles or rules that determine its 

behaviors (Flanagan, Ortiz, & Alfonso, 2013). In the WJ-IV Concept Formation subtest, 

examinees are presented with a complete stimulus set, and he or she must derive the rule 

for each item; therefore, in addition to measuring principles of inductive logic, the WJ-IV 

Concept Formation subtest also measures the mental flexibility required when an 

individual shifts mental set, which is an aspect of executive processing (Mather & 

Wendling, 2014). An expert in the field of cognitive assessment was consulted to split the 

subtest items into two separate, and psychometrically similar measures, thereby reducing 

the chance of practice effects associated with completing identical measures within the 

short test-retest time interval. Each participant completed all sample items on each testing 

occasion to maintain the integrity of the test; however, the test at time point one was 

composed of half of the item pairs appearing on a single page of the stimulus book, while 

the test at time point two was composed of the remaining half of item pairs. 

The intuitive link between applied mathematical problem solving and computer 

programming activities justified incorporating an assessment of mathematics into the 

current study. Although lessons within the selected curriculum did not explicitly 

incorporate math instruction into daily activities, in order to create functional computer 

programs, knowledge of math concepts and their applications was necessary; therefore, 
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the Math Concepts and Applications (MCA) subtest from the Kaufman Tests of 

Educational Achievement, Third Edition (KTEA-3) (Kaufman & Kaufman, 2014) was 

selected as a way to gauge changes in mathematical thinking skills. Not only is this test a 

standardized measure of mathematical conceptual knowledge, but the KTEA-3 also 

offers two forms (A and B) to allow for subtests to be administered in close temporal 

proximity to one another while maintaining technical adequacy and eliminating practice 

effects associated with completing identical assessments in close test-retest intervals. 

Form A was administered to all participants in attendance before the study began, and 

form B was administered to all participants in attendance at time point two. The KTEA-3: 

MCA subtest has a split-half internal consistency reliability coefficient of .96 for fifth 

grade students, and is highly correlated with (r = .85) with the Mathematical Problem 

Solving subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III); 

therefore, it was considered a valid and reliable measure of academic achievement in the 

domain of applied mathematical problem solving. 

To measure creative thinking abilities, the consensual assessment technique 

(CAT) (Amabile, 1982), using three raters trained on the method and considered to be 

quasi-experts in the field of learning, computer science, or educational psychology, was 

utilized. The CAT method of assessing creativity is considered by leading creativity 

researchers to be the most reliable and valid manner in which creativity can be measured 

(Baer & McKool, 2009). The CAT involves rating participant-created products and 

artifacts using a scale across the two major components considered essential in evaluating 

creativity, i.e., originality and usefulness (Mayer, 1999). An assessment of creative 

problem solving (CPS) was developed using items that were similar to a study conducted 
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by South Korean researchers, Kim, Chung, and Yu (2013) who developed and validated 

the “Synthetic Creative Problem Solving Test” using the CAT to evaluate dimensions of 

creativity with over 100 youth who participated in Scratch programming activities. The 

primary measure of creative problem solving in the current study consisted of a pre and 

post-test with four prompts nearly identical to those used in Kim, Chung, and Yu’s 

(2013) study; however, the language of four item prompts composing each test was 

modified to reflect cultural and geographical differences between South Korean and 

American students (see Appendices A and B for complete pre and post-tests). 

Two brief questionnaires were completed by all participants in the study to 

investigate the relationship between personality differences, and previous programming 

experience or computer usage, and assessment variables. Participants completed a brief, 

eight-item questionnaire designed to measure the degree to which they endorsed taking 

risks and seeking out new or exciting experiences, referred to as the Type-T (Thrill) 

dimension of personality (Farley, 1986). A recent review of the Type T literature is found 

in Sarshar (2017), which explored the personality characteristic’s relationship to mindset, 

flourishing, psychological entitlement, creativity, and stress in a sample of 

undergraduates. The questionnaire presented statements like, “I enjoy taking chances,” 

and, “I like to make up my own mind.” Participants then circled, “Never,” “A little bit,” 

or, “A lot” (Farley, 2017, personal communication). See Appendix C for the full Type-T 

questionnaire. The Computer Usage Questionnaire (CUQ) asked participants about their 

prior participation in computer programming activities, and their usage of computing 

devices both at home and in school. Both questionnaires were completed in small groups 

at the beginning of the study. These data were used to provide information on how 
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children with different personality characteristics or varying levels of experience using 

computers and using code may or may not be more likely to benefit from computer 

programming activities. 

Finally, youth in both the experimental and control groups were given a test of 

computer programming conceptual knowledge (PCK) at the beginning of the study 

(PCK1), and again after each group had completed the computer coding course (PCK2). 

For the PCK1, participants completed the most recently available 2016 USA Bebras 

Challenge Computational Thinking Assessment, obtained through coordination with the 

USA Branch of the Bebras Organization (“Bebras Computing Challenge,” 2018). The 

pre-test (PCK1) was selected for its attempt to assess CT skills with tasks that do not 

require any prior knowledge of computer programming, combined with its use in prior 

research (Straw, Bamford, & Styles, 2017). See Dagiené and Stupurienė (2016) for a 

review of studies involving the Bebras Challenge. Items on the PCK1 were adapted from 

the 2016 UK Bebras Challenge Computational Thinking Assessment to reflect language 

differences between UK English and American English, while retaining the same content 

and tasks (“UK Bebras Computational Thinking Challenge,” 2016). See Appendix D for 

questions and answers for the item set of the USA 2016 Bebras Challenge used in the 

current study, and for a description of the theoretical and practical considerations in the 

early development of the Bebras contest, see Dagienė (2006).  

The assessment is an online, 45-minute limit, 15-question test assessing various 

areas of CT as conceptualized and described by Selby, Dorling, and Woollard (2014), 

i.e., algorithmic thinking, evaluation, decomposition, and generalization, and each item 

requires tapping in to up to three of these CT areas. Each item was developed through a 
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workgroup of CS researchers and educators that meets on an annual basis, and is 

presented in a multiple-choice format that presents a child-friendly, illustrated scenario 

designed to 1) represent key computational concepts, 2) be easily understandable, 3) 

solved within a three-minute timeframe, 4) able to be presented on a single page, 5) 

solvable at a computer without the use of other software of paper and pencil, 6) 

independent from specific systems, and 7) be interesting and/or funny (“Bebras,” 2018). 

Item sets are grouped for specific age-bands (Pre-Primary – ages 5-8, Primary – ages 8-

10, Benjamins – ages 11-12, Cadets – ages 13-14, Juniors – ages 15-16, and Seniors – 

ages 17-18), and each item set contains five items across three levels of difficulty. Items 

within each age band are adjusted annually to contain specific tasks that reflect the 

expected range of performance across age groups based on observed patterns of 

performance from the previous year. Participants in the current study, regardless of their 

chronological age, were administered the Benjamins group item set. 

Participants were assigned anonymous “skeleton” accounts to access assessment 

content through the web, and were presented items in a random order until the time 

expired, or all questions had been answered. Participants were allowed to ask questions 

while they took the assessment, and both myself and the lead course instructor provided 

task clarification when needed. Attempts were made to limit communication among 

nearby children; however, the configuration of the classroom inevitably allowed for some 

peer communication during the assessment. See Table 3.1 for a list of the items 

administered to participants in the current study, and their associated CS domains, CT 

areas, and key word tags describing specific concepts embedded in the task. The table is 

organized according to item difficulty level. 
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Table 3.1 

2016 USA Bebras Challenge (PCK1) Assessment Composition 
 

Item Name  Difficulty  CT Skills / CS Domain / (keyword tags) 

Mazes  
A 

 
Algorithmic Thinking / AP 

Soccer Game 
 

A 
 Algorithmic Thinking, Evaluation / AP / (IF 

condition) 

Bottles  
A 

 
Abstraction, Evaluation / DSR 

Tube System 
 

A 
 Algorithmic Thinking, Decomposition, 

Generalization / AP 

Party Guests 
 

A 
 Algorithmic Thinking, Decomposition / AP / 

(Dependency, Graph) 

Secret Recipe  
B 

 
Algorithmic Thinking, Decomposition / DSR 

Car Trip 
 

B 
 

Algorithmic Thinking, Decomposition / AP 

Robot Exit 
 

B 
 

Algorithmic Thinking / AP 

Party Banner 
 

B 
 

Abstraction, Evaluation, Generalization / AP 

Beaver Code 
 

B  Algorithmic Thinking, Decomposition, 
Generalization / DSR 

Blossom 
 

C 
 

Evaluation, Generalization / AP 

Magic Potions 
 

C 
 

Algorithmic Thinking, Evaluation / AP 

Hurlers Shake 
Hands 

 
C 

 
Algorithmic Thinking / CPH / (Parallel processing) 

Primary Health 
Care 

 C  
Abstraction, Evaluation / Data 

Paint it Black 
 

C 
 Abstraction, Algorithmic Thinking, Evaluation / AP / 

(Boolean Algebra) 
 
Note: In CS Domain column, AP = Algorithms and Programming; DSR = Data, Data 
Structures and Representations; CPH = Computer Processes and Hardware. 
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A post-test of programming conceptual knowledge (PCK2) was developed largely 

based on the items from the Coding Quiz used in Straw, Bamford, and Styles (2017), and 

through collaboration with the lead course instructor. It was administered as a multiple-

choice, paper-pencil assessment consisting of seven items that focused on the seven core 

computational concepts as outlined by Brennan and Resnick (2012), i.e., sequences, 

loops, events, parallelism, conditionals, operators, and data (see Appendix E for the 

complete PCK2 assessment). This assessment was selected and developed due in part to 

its practical feasibility with respect to the total amount of time children spent completing 

various assessments, while also in part due to the efficiency with which responses could 

be quantified. Participants were presented with a prompt describing a sample Scratch 

project with six, lettered choices containing different samples of Scratch code, and one, “I 

don’t know,” option. Item content also reflected specific instructional activities and 

language taught and used during the course, and in this way served to function as an 

assessment of the degree to which participants learned course content. Table 3.2 

summarizes the item task, CT areas, and curricular content for the PCK2. 

This type of assessment technique for knowledge of programming concepts has 

notable advantages to the more prevalent artifact-based assessment technique (e.g., 

Denner, Werner, & Ortiz, 2012). First, knowledge of computational concepts is directly 

tested as opposed to indirectly assumed through analysis of artifacts, e.g., percentages of 

types of code included in projects; and second, this assessment technique focuses on a 

process-in-action rather than a process-via-memory inherent in interview, or self-report 

assessment techniques (Brennan & Resnick, 2012; Werner, Denner, & Campe, 2014). 
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Table 3.2 

Programming Conceptual Knowledge Post-test (PCK2) Composition 

Item  Task Description  CT Areas  Curricular Content 

1 

 
Move a cat along a 
path to a donut. 

 

Sequences 

 Understanding of 
rotation, direction, and 
orientation 

2 

 Make a teacher say 
something by 
inputting the correct 
value. 

 
Conditionals 
Operators 
Data 

 
Understanding of > 
symbol, "ask" and "say" 
blocks 

3 
 Make a windmill 

rotate forever. 
 Loops 

Sequences 
 

"Forever" block 

4 

 
Move a parrot when 
a key is pressed. 

 

Events 

 
Understanding of x and 
y as axes 

5 

 
Make a dinosaur say 
a times table. 

 Sequences 
Loops 
Operators 
Data 

 
Understanding of > and 
* symbols, Variables 

6 

 
Make a person 
dance and speak 
forever. 

 Parallelism 
Sequences 
Loops 
Events 

 
 "Define," "Broadcast," 
and "Receive" blocks 

7 

 
Set a timer to a 
song. 

 Events 
Sequences 
Loops 
Operators 

 
Timer as a variable, 
"Repeat Until" block 

 

Participants in both experimental and control groups spent the first two days of 

the school’s summer camp educational program completing individual and group 

assessments, and setting up online accounts necessary for using the selected curriculum 

and programming environment. Upon completion of lessons and activities of the selected 

curriculum, participants then completed individual and group post-tests associated with 
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their respective group condition and time point.  Individually administered assessments 

(i.e., the WJ-IV CF1 & 2, and the KTEA-3 MCAA & B) took approximately 15 minutes to 

administer per child. All other assessments were administered in small groups with the 

PCK1 taking on average approximately 30 minutes for participants to complete; the PCK2 

approximately 15 minutes; and the CPS1 & 2 assessments taking approximately 15 minutes 

each for participants to complete. The Type T personality questionnaire, and the 

Computer Usage Questionnaire took approximately 15 minutes per participant to 

complete altogether. The approximate amount of time for all assessments included in the 

study was approximately 150 minutes per child. 

Materials 

The curriculum selected was developed by the ScratchEd team at the Harvard 

Graduate School of Education, and is entitled “Creative Computing” (Brennan, Balch, & 

Chung, 2014). The Creative Computing (CC) curriculum is composed of seven units with 

44 lessons and activities range from 19.5 to 30.25 hours of time in total. The sequence of 

lessons and units introduces users to the Scratch programming environment and explores 

the various functions and tools that make up Scratch. Lessons include non-computerized 

exercises designed to encourage children to think about the intricacies of designing a 

computer program to perform a desired operation or function, as well as open-ended 

project-based activities, e.g., personalized story-based animations, individually created 

games, etc., that allow children to personalize their experience in the Scratch 

programming environment. Participants were provided with individual, hard copies of 

workbooks to work through lessons, take notes, and write their ideas and reflections 

instead of using individual design journals, as is suggested in the CC curriculum. Brief 
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group discussions based on the prior day’s activities, occurring at the beginning of each 

instructional day allowed for peer feedback and collaboration, which has been previously 

linked to greater understanding of programming concepts (Werner, Denner, & Campe, 

2014). When youth finished lessons early, they were encouraged to complete a series of 

mini-lessons called “Scratch Cards” developed by the ScratchEd team. These Scratch 

Cards served as mini-lessons designed to teach specific functions of various codes across 

the various code categories, and were grouped as themed sets, e.g., Animate Your Name, 

Create a Story, Make Music, etc. 

Each lesson was introduced in a group setting, where approaches to activities 

embedded within each lesson were discussed together, and then demonstrated by the 

instructor on a projector. Youth suggested codes to input, while the instructor talked 

through how the computer interpreted the code. When the proposed solution did not 

produce the desired outcome, the instructor used a think-aloud procedure to model the 

problem solving process until the outcome was achieved. Youth then individually worked 

to create Scratch projects while I and the lead instructor circulated through the room to 

work individually with participants to help troubleshoot malfunctions in their projects, 

and also to help them understand how to use various codes, upload media, and navigate 

the Scratch interface. The lead computer instructor and I met briefly after each class 

period to discuss our observations and experiences as it related to how the youth were 

responding to the instructional activities. We then communicated electronically to adjust 

the following day’s lesson plans by developing sample projects illustrating key concepts 

using the interests expressed in reflection discussions in an attempt to boost interest and 
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motivation. A complete list of lessons completed for each group across instructional days 

is displayed below in Table 3.3. 

Table 3.3 

 Day-by-day Lessons for Experimental and Control Groups 

Experimental Group  Control Group 

Day 1 
Introducing Scratch 
Scratch Account 
Scratch Surprise 

 
Day 1 

Introducing Scratch 
Scratch Account 
Scratch Surprise 

Day 2 Programmed to Dance 
10 Blocks 

 
Day 2 Programmed to Dance 

Debug It! 

Day 3 
Debug It! 
About Me 
Intro to Build-a-Band 

 
Day 3 10 Blocks 

About Me 

Day 4 
Orange Square, Purple Circle 
Performing Scripts 
Build-a-Band 

 
Day 4 Performing Scripts 

Build-a-Band 

Day 5 It's Alive! 
Debug It! 

 
Day 5 Music Video 

Day 6 Music Video 
 

Day 6 
Characters 
Conversations 
Scenes 

Day 7 Characters 
Conversations 

 
Day 7 

Debug It! 
Dream Game List 
Starter Games 

Day 8 Debug It! 
Scenes 

 
Day 8 

Score 
Extensions 
Interactions 

  
 

Day 9 Debug It! 
Extensions/Remixing 

   Day 10 Robotic Kit Activity 

 The total duration of each class was an attempt to reflect international guidelines 

on the amount of CS instruction required for a high school level certification in computer 

science and information technology instruction set forth by the Department of Education 

in the UK, and also adopted by South Korea (Yoo et al., 2006). Each class session lasted 
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approximately three hours per day. The experimental group participated in Scratch 

activities over eight class periods while the control group participated in Scratch activities 

for ten class periods in total, amounting to 24 hours of experience with Scratch for the 

experimental group, and 30 hours of experience with Scratch for the control group. This 

difference in the number of experiential hours was a result of losing instructional days 

due to excessive heat school closures, and a scheduling miscommunication. 

A positive reinforcement system using salvaged silicon microchips as tokens was 

established prior to the start date of the study in a preemptive attempt to promote positive 

behavior among youth in each group. Participants could earn a chip for 1) helping 

another classmate solve a problem, 2) solving a problem and explaining to a teacher how 

you did it, or 3) completing a Scratch Card set. The partnering school obtained individual 

robotic kits at the end of the study for youth who participated in the course and earned a 

pre-determined amount of computer chip points. 

Some degree of participant mortality and attrition was expected due to the 

fundamental unpredictability of research with human subjects, combined with the highly 

variable nature of families’ schedules during the summer months. In the experimental 

group, the average attendance was only 65% of instructional days, resulting in an average 

of 15.75 hours of experience with Scratch and the CC curriculum activities. Only two 

children attended 100% of instructional days for the experimental group. In the control 

group, participants on average attended 72.5% of instructional days, resulting in an 

average of 21.75 hours of experience with Scratch and the CC curriculum activities. Six 

children in the control group attended 100% of instructional days. On every assessment 

included in the study, there were fewer participants in the control group that completed a 
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given measure. While seven participants in the experimental group completed 100% of 

assessments, only four did so in the control group. The main reason for differences in 

experimental and control group attendance was that four youth in the control group were 

present only for the initial portion of the camp and, therefore, only participated in 

assessments at time point one. Consequently, these children did not receive any 

instruction or have any experience in the CC curriculum, and could neither complete the 

PCK2, nor were they present to complete remaining assessments. 

Data Collection 

For the WJ-IV CF1 & 2 assessments, the obtained split-test raw scores were 

converted to total raw scores by calculating the expected total raw score for the full, 

standard version of the WJ-IV CF using the ratio of split-test raw scores to the maximum 

amount possible for each time point. The total raw score for each time point was then 

converted to W scores using standard scoring protocol and software. Performance was 

reported as W scores, which are a special transformation of the Rasch ability scale 

(Rasch, 1960; Wright & Stone, 1979), because of the short test-retest time interval of the 

study, and the mathematical properties of W scores that make them more sensitive to 

change than the traditionally reported standard scores. The W scale for each subtest of the 

WJ-IV is centered on a value of 500, which is set to approximate the average 

performance of 10-year-old individuals (Mather & Wendling, 2014). Youth ranged from 

468 to 546 in their W scores across WJ-IV CF measures at both time points, and there 

was evidence for good reliability between the pre and post-tests, as performance on the 

WJ-IV CF1 was highly correlated with performance on the WJ-IV CF2 (rs = .751, p = 

.001). Across both experimental and control groups, there were five participants who 
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took the pre-test, but did not take the post-test, and there were two participants who only 

took the post-test. Three participants completed the pre-test at time point two. 

The KTEA-3 MCA Forms A and B were administered and scored according to 

standardized procedures, and reported as standard scores rather than W scores, as these 

were not able to be generated for this assessment. Youth ranged from 63 to 123 in their 

standard scores across both forms A and B of the KTEA-3 MCA, and as with the WJ-IV 

CF pre and post-test, there was good evidence for reliability on both forms A and B of the 

KTEA-3 MCA, as performance on form A was highly correlated with performance on 

form B (rs = .928, p = .000). Across experimental and control groups, there were five 

participants who completed form A but not form B; three participants who completed 

form B but not form A; and one participant who did not complete either forms A or B. 

Ratings for participant responses on each item of both the CPS1 and CPS2 were 

provided by three research assistants on a 1-5 Likert type scale (1 = Very Low, 2 = Low, 

3 = Average, 4 = High, 5 = Very High) across two dimensions of creativity, i.e., 

originality and usefulness. Ratings were averaged across raters for each dimension, and 

then dimensional scores were averaged to create a total score. When one or more raters 

indicated that the youth may have misunderstood or misinterpreted items, those items 

were not included in either the overall score, or their overall dimensional scores. Across 

both experimental and control groups, there were seven participants who completed the 

CPS1 and not the CPS2; two participants who completed the CPS2 and not the CPS1; and 

two participants who completed neither the CPS1 nor the CPS2. Dimensional and total 

scores on the CPS1 ranged from 2.00 to 4.08, and from 1.33 to 3.83 on the CPS2. There 
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was evidence for good reliability for ratings of responses on the CPS1 and CPS2, as the 

total scores for each assessment were highly correlated (rs = .712, p = .009). 

To examine whether raters’ interpretation of participant responses tended to agree 

with one another, interrater reliability was calculated across items and dimensions for 

both the CPS1 and CPS2 using a two-way mixed effects model to test absolute agreement 

among raters (k = 3). Intraclass correlation coefficients (ICC), their 95% confidence 

intervals, and significance levels are presented in Tables 3.4 and 3.5 below. Overall, there 

was little evidence to support agreement among raters, as most ICCs were below the 0.5 

level, and were non-significant. On seven out of twenty four reported dimensional and 

total scores across items and assessments, ICCs were negative in value, suggesting that 

raters actually disagreed in their ratings of creativity across dimensions and items. There 

were only four significant ICCs across dimensional and total scores for each item on both 

the CPS1 and CPS2. ICCs that were significant at the p < .05 level ranged from .465 to 

.659 in value and included the originality dimensional score from item one from the CPS1 

and item two from the CPS2, as well as the usefulness dimensional and total score for 

item four from the CPS2. The low number of significant ICCs indicates that raters did not 

view responses to CPS item prompts as they relate to the constructs of originality and 

usefulness in a similar way, which may have implications for future studies using the 

CAT method to assess creativity. 

  



www.manaraa.com

 

 78 

Table 3.4 

 Creative Problem Solving Pre-test (CPS1) Interrater Reliability Statistics 

  	
   Intraclass 
Correlation 

	
   95% Confidence Interval 	
  
Sig.   	
   	
   Lower Bound 	
   Upper Bound 	
  

Item 1 

Originality 	
   .659 	
   -.002 	
   .915 	
   .029* 
Usefulness 	
   -.907 	
   -2.290 	
   .404 	
   .946 

Total 	
   -.376 	
   -2.665 	
   .638 	
   .686 

Item 2 

Originality 	
   -.441 	
   -1.774 	
   .383 	
   .818 
Usefulness 	
   -.752 	
   -3.161 	
   .330 	
   .877 

Total 	
   -.445 	
   -1.956 	
   .404 	
   .803 

Item 3 

Originality 	
   .476 	
   -.234 	
   .809 	
   .071 
Usefulness 	
   .322 	
   -.357 	
   .730 	
   .146 

Total 	
   .478 	
   -.242 	
   .810 	
   .072 

Item 4 

Originality 	
   .027 	
   -1.026 	
   .589 	
   .455 
Usefulness 	
   .351 	
   -.221 	
   .709 	
   .095 

Total 	
   .258 	
   -.440 	
   .674 	
   .194 
 

Table 3.5 

Creative Problem Solving Post-test (CPS2) Interrater Reliability Statistics 

  	
   Intraclass 
Correlation 

	
   95% Confidence Interval 	
  
Sig.   	
   	
   Lower Bound 	
   Upper Bound 	
  

Item 1 

Originality 	
   -.058 	
   -1.052 	
   .767 	
   .509 
Usefulness 	
   .046 	
   -3.015 	
   .889 	
   .439 

Total 	
   .173 	
   -1.717 	
   .865 	
   .363 

Item 2 

Originality 	
   .578 	
   .019 	
   .860 	
   .022* 
Usefulness 	
   -2.143 	
   -10.973 	
   .124 	
   .963 

Total 	
   .026 	
   -1.197 	
   .672 	
   .454 

Item 3 

Originality 	
   -.109 	
   -1.361 	
   .700 	
   .551 
Usefulness 	
   .494 	
   -.196 	
   .871 	
   .064 

Total 	
   .457 	
   -.278 	
   .862 	
   .093 

Item 4 

Originality 	
   .300 	
   -.246 	
   .736 	
   .125 
Usefulness 	
   .538 	
   -.035 	
   .849 	
   .007* 

Total 	
   .495 	
   -.068 	
   .829 	
   .008* 
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The variability in ICCs was in part due to the variable number of cases included 

in the analysis across items, as there were a number of participants who were thought to 

have misinterpreted or misunderstood items across items on each assessment; 

subsequently, ratings for these items were not reported or included in calculating 

interrater reliability. Table 3.6 displays the number of raters who indicated 

misinterpretation or misunderstanding across items of the CPS1 and CPS2. In general, 

there was little consensus among raters as it pertained to perceived misinterpretation of 

item prompts, as evidenced by the trend on both the CPS1 and CPS2 for the majority of 

misinterpretation indications coming from only one rater. 

Table 3.6 

Perceived Misinterpretations Across Items on CPS1 and CPS2 

 	
    	
   Number of raters indicating misinterpretation 

 	
    	
   One 	
   Two 	
   Three  Total 

CPS1 
(n = 20)	
  

Item 1 	
   4 	
   5 	
   1  10 
Item 2 	
   2 	
   0 	
   0  2 
Item 3 	
   11 	
   0 	
   0  11 
Item 4 	
   0 	
   0 	
   0  0 

Subtotal 	
   17 	
   5 	
   1  23 
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

CPS2 
(n = 15)	
  

Item 1 	
   6 	
   3 	
   0  9 
Item 2 	
   3 	
   0 	
   0  3 
Item 3 	
   5 	
   2 	
   0  7 
Item 4 	
   2 	
   1 	
   0  3 

Subtotal 	
   16 	
   6 	
   0  22 

	
   Grand Total 	
   33 	
   11 	
   1  45 

 

On the PCK1, performance was reported according to the scoring procedures of 

the 2016 USA Bebras Challenge. Each item’s level of difficulty was weighted differently, 

such that correct answers on items categorized as level A difficulty were awarded six 
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points; nine points for level B difficulty; and 12 points for level C difficulty. Incorrect 

answers resulted in a two, three, or four-point deduction for difficulty levels A, B, and C 

respectively, and all additions or deductions started from a base value of 45 points. The 

minimum score possible was, therefore, zero points as the assessment included five items 

across each level of difficulty. Total scores for the PCK1 ranged from 0 to 108, and on 

average, participants answered 3.3 items correctly, scoring an average of 38.2 points. 

For the PCK2 the total number of items answered correctly was reported, and 

there was a maximum of seven points possible. Scores ranged from 0 to 4 points, with an 

average of 1.8 points across both experimental and control groups. Across both 

experimental and control groups, there were six participants who completed the PCK1 

and not the PCK2; one participant who completed the PCK2 and not the PCK1; and four 

participants who completed neither the PCK1 nor the PCK2. 

Participant responses on the Type T questionnaire were assigned a numeric value 

and summed to create a total score. When participants circled, “Never,” this was assigned 

a value of zero; when they circled “A Little Bit,” this was assigned a value of one; and 

when they circled, “A Lot,” this was assigned a value of two. The maximum possible 

score was thus 16, and scores ranged from 7 to 16 with an average of 10.7. Across both 

experimental and control groups, there were three participants who did not complete the 

Type T questionnaire, and they were all in the control group. 

Responses on the Computer Usage questionnaire (CUQ) were quantified 

according to item content, while written responses were qualitatively analyzed. Twenty-

one participants took the survey, and all three children who did not complete it were in 

the control group. Sixty-two percent of youth (n =13) said they did not have a desktop at 
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home, but had at least one laptop at home (six children with one, and seven children with 

two). Over half (56%) of participants in the control group reported having a desktop 

computer at home, while only one quarter of participants in the experimental group 

reported having a desktop computer at home. Eighty-six percent of youth had at least one 

tablet at home, with an average of two tablets, and ranging up to five tablets. Ninety 

percent (n = 19) of youth reported having internet access at home, with twelve usually 

using a phone to access internet; four usually using another device (console or TV); three 

usually using laptop; and one usually using tablet. Tables 3.7 and 3.8 display the rates of 

computer activities in the home and school environments for youth in both experimental 

and control groups. Participants reporting “other” activities wrote in responses that could 

generally be categorized into one of the response choices. 

Table 3.7 

Youth Computer Activities at Home 

  Experimental (n = 12)  Control (n = 9) 
Playing games  100%  58% 
Doing homework  67%  42% 
Writing  8%  25% 
Watching Videos  83%  50% 
Reading news stories or articles  25%  17% 
Going on social media  58%  42% 
Other  42%  8% 
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Table 3.8 

Youth Computer Activities at School 

  Experimental (n = 12)  Control (n = 9) 
Playing games  83%  58% 
Doing work  92%  58% 
Learning programs or software  58%  58% 
Making presentations  33%  25% 
Making animations  17%  17% 
Making games  8%  17% 
Writing computer code  67%  17% 
Other  33%  0% 

 

Youth reported on average that they used a smart phone two to three times per 

day; a tablet one to two times per week; a laptop computer one to two times per week; a 

desktop computer one to two times per month; “other” computing devices two to three 

times per day (most commonly a console or TV). Participants in the experimental group 

reported using their smart phones more often than participants in the control group, but 

there were no differences in frequency of use of other computing devices between 

groups. Thirty-eight percent (n = 8) of youth said they had used computer programming 

or coding to solve a problem or create something in the past. Twenty-four percent (n = 5) 

of youth said that learning about how computers help to solve problems was not 

important, or were unsure if it was important. Written responses for interest in using 

computers to help solve problems focused around using computers to do work, or a vague 

sense of helping in some way. Forty-three percent (n = 9) of youth said they had 

participated in a coding camp or club before, with no differences across experimental and 

control groups, and forty-seven percent (n = 10) said they had done programming or 

coding on computers before, with several youth reporting that they had used Code.org or 
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Scratch in the past. Participants in the experimental group reported a higher rate (63%) of 

previous coding or programming experience than the control group (44%). 

There were a number of correlations among responses on items of the Computer 

Usage Questionnaire (CUQ) and assessment variables. First, youth who reported having 

access to the internet tended to do better on the PCK1 (rs = .518, p = .023). Second, 

having a desktop computer in the home was correlated with performance on the WJ-IV 

CF1 (rs = .462, p = .040), and frequency of desktop use was also positively correlated 

with performance on the WJ-IV CF1 (rs = .453, p = .045). Third, frequency of laptop use 

was positively correlated with performance on the KTEA-3 MCAB (rs = .544, p = .036). 

Lastly, reported tablet usage was positively correlated with several assessment variables, 

indicating that youth who reported using tablets more often tended to do better on various 

assessments included in the study. Tablet use was correlated with performance on the 

WJ-IV CF1 (rs = .657, p = .002), the KTEA-3 MCAA (rs = .671, p =.002) and KTEA-3 

MCAB (rs = .552, p =.033), as well as the CPS1 (rs = .483, p = .042) and CPS2 (rs = .574, 

p = .032). Participants who indicated that they had participated in a coding camp or club, 

or had previously engaged in computer programming or coding activities were not 

associated with significantly better scores across assessments, and in fact, the only 

significant correlation with any assessment variable (PCK2) and prior experience with 

computer programming or coding was negative in value (rs = -.658, p = .028). 

The number of participants in the experimental and control groups who completed 

assessments, their mean scores, and standard deviations are displayed in Table 3.9. 
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Table 3.9 

Descriptive Statistics Across Assessments by Group 

 	
   Experimental  
(n = 12) 

	
   Control 
(n= 12)  

	
   Total 
(n = 24) 

 	
   N Mean SD 	
   N Mean SD 	
   N Mean SD 

WJ-IV CF1 
	
   12 490 13.9 	
   10 497 22.9 	
   22 493 18.3 

WJ-IV CF2 
	
   10 490 11.5 	
   8 490 10.9 	
   18 490 10.9 

KTEA-3 MCAA 
	
   12 87 17.0 	
   7 92 10.6 	
   19 89 14.8 

KTEA-3 MCAB 
	
   9 88 15.6 	
   8 90 18.0 	
   17 89 16.3 

CPS1 	
   11 3.03 0.44 	
   9 2.98 0.45 	
   20 3.00 0.43 

CPS2 
	
   9 2.66 0.55 	
   6 2.59 0.35 	
   15 2.63 0.47 

PCK1 
	
   11 36.7 28.7 	
   8 40.3 19.0 	
   19 38.2 24.5 

PCK2 	
   7 1.71 1.1 	
   6 1.83 1.3 	
   13 1.77 1.2 

Type T 	
   12 9.9 2.2 	
   9 11.8 2.2 	
   21 10.7 2.3 

 

Relationship Among Variables 

 There were a number of variables that showed significant correlations with one 

another among participants in both the experimental and control groups, and as a whole. 

These relationships were produced using Spearman’s rho (rs) with cases excluded 

pairwise at both the group and overall sample levels, as the low overall N in the study 

necessitated the use of nonparametric statistics. Demographic variables (age, sex, PSSA 

scores, special education status, Type-T personality characteristic), classroom variables 

(attendance, instructional hours, total chip count), and assessment variables (WJ-IV CF1 & 

2, KTEA-3 MCAA & B, CPS1 & 2, and PCK1 & 2) were entered into the analyses. Correlation 

statistics are primarily reported in terms of the overall sample, as not only were there 
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fewer participants in the control group on average who completed various assessments, 

and thus, included in their respective group analyses across those variables (n = 10 for the 

experimental group and n = 7.67 for the control group), but also because the group 

correlations generally followed the same trends as the overall sample correlations. There 

were, however, several interesting differences in group correlations, and they are 

discussed first, followed by presentation of the relationship among variables in the 

overall sample. Full correlation matrices for all variables entered into the analyses by 

overall sample can be found in Appendix F, and by groups in Appendices G and H. 

The first difference between correlations in the experimental and control groups 

was that there were overall less significant correlations in total for the control group, with 

only nine significant correlations emerging in the analysis of 16 variables, while there 

were 27 significant correlations in the experimental group. Second, special education 

status was negatively correlated with the Type T personality characteristic in the 

experimental group (rs = -.596, p = .041), but positively correlated with the Type T 

personality characteristic in the control group (rs = .681, p = .043). While these 

correlations are notable, they require some qualification, as there were only four 

participants in total who were classified as receiving special education across both 

groups. Therefore, upon closer inspection, these correlations suggest that the two children 

in the experimental group who received special education in school tended to report 

higher levels of thrill seeking behavior, while the two children receiving special 

education in the control group tended to report lower levels of thrill seeking behavior. 

Lastly, while participants in the control group who obtained higher scores on a pre-test of 

CT skills (PCK1) were associated with earning more computer chips during the CC 
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course (rs = .800, p = .031), participants in the experimental group whose academic 

achievement, as measured by PSSA ELA and PSSA Math scores, were associated with 

earning more computer chips. These correlations may partly be explained by the 

additional effort made by instructors to reinforce youth in the experimental group who 

had difficulty with programming activities, perhaps due to a relationship between 

academic achievement and success with CC activities; whereas youth in the control group 

who possessed higher CT skills prior to beginning CC lessons and activities were able to 

experience more success, and subsequently earned more computer chips. 

Analyzed as a whole, and independent of the CC course instruction, being a male 

was moderately correlated to higher performance on the PCK1 (rs  = .485, p = .022). Girls 

tended to perform worse than boys on PSSA ELA (rs = -.405, p = .050). Youth in higher 

grade levels tended to perform better on the CPS2 assessment (rs = .680, p = .005), but 

there was no relation to grade level and the CPS1 assessment (rs = .252, p = .298). 

 There were significant positive correlations among scores on both the Math and 

ELA PSSAs, the KTEA MCA Forms A and B, and CPS assessments, and they are 

displayed in Table 3.10. The correlations between the PSSA ELA and KTEA-3 MCAA 

and KTEA-3 MCAB were lower in value than the correlations between the PSSA Math 

and KTEA-3 MCAA and KTEA-3 MCAB, and this suggests good concurrent validity for 

the measure of mathematic ability on both the Math PSSA and KTEA-3 MCA 

assessments. Participant PSSA ELA and Math scores were also positively and moderately 

correlated to CPS1 and CPS2 scores, with correlation coefficients ranging from .488 to 

.544. 
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Table 3.10 

Correlations among PSSA, KTEA-3 MCA, and CPS scores 

 1 2 3 4 5 6 
1. PSSA ELA ¾      
2. PSSA Math .533** ¾     
3. KTEA-3 MCAA .462* .786** ¾    
4. KTEA-3 MCAB .607** .831** .928** ¾   
5. CPS1 .488* .526* .799**                .788** ¾  
6. CPS2 .544* .518* .655* .681** .712** ¾ 

Note: *p < .05; **p < .01 

While the correlations among standardized measures of academic achievement 

were expected given their ubiquitous usage in the field of education, and known strong 

psychometric properties, the strong correlation between the CPS1 and CPS2 (r2 = .712, p 

= .009) was particularly notable, as these instruments were developed specifically for this 

study. This finding suggests good reliability of the CPS assessment in the context of the 

current study. 

The total number of token computer chips earned by each participant across the 

duration of the study was summed and used for all analyses. Overall, the experimental 

group earned more chips on average than control group (100 vs. 24), but there were fewer 

participants in the control group who attended instructional days regularly. Taking this 

into account by multiplying the percentage of days attended by each participant with their 

total chip counts, the trend remained the same. Participants in the experimental group 

earned an average of 7.4 chips by attendance, while those in the control group earned an 

average of 2.7 chips by attendance. Unsurprisingly, youth who attended more frequently 

earned more chips, and there was a strong correlation between the attendance and the 

total number of chips earned throughout the course of the study (rs = .745, p = .000). 
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Cumulative chip count was also negatively correlated with scores on the Type T 

personality questionnaire (rs = -.513, p = .035), suggesting that youth who reported more 

risk-taking behavior tended to earn less chips. This was the only significant correlation 

with any demographic or assessment variable and the Type T personality questionnaire.  

One interpretation of this correlation may be that the Type T personality 

characteristic could be associated with more emphasis on nonconformity, suggesting that 

youth with a higher risk-taking or thrill-seeking personality profile would be less likely to 

subscribe to a positive behavior reinforcement system. There were, however, some 

problems with the chip system itself, as earning a computer chip was not entirely 

dependent on the group rules laid out in the beginning of the course. On the one hand, 

while there was a group of youth who genuinely earned chips for completing Scratch 

cards, helping others to resolve an issue in Scratch, or showing an instructor their 

completed work; there was, on the other hand, another group of youth who seemed to 

become disinterested with lessons and the Scratch programming environment as they 

found the activities somewhat frustrating, and subsequently did not earn token computer 

chips. These participants who expressed more frustration and reservation in completing 

lessons and projects ended up earning chips more easily as instructors felt the need to 

increase the frequency of reinforcement by reducing the criteria needed to earn chips on 

an individual basis. Viewing the total chip count with this observation in mind, another 

interpretation of the negative correlation with Type T questionnaire scores may be that 

children who obtained higher scores on the Type T personality questionnaire earned less 

computer chips because there was not enough thrill or excitement in the computer 

programming activities comprising the CC curriculum. 
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 There were several significant correlations between the PCK1 and PCK2, and 

other assessments. First, performance on the PCK1 assessment was positively correlated 

with their performance on the both the WJ-IV CF1 (rs = .534, p = .022), and WJ-IV CF2 

(rs = .559, p = .024). Similarly, performance on the KTEA-3 MCAA (rs = .578, p = .015) 

and KTEA-3 MCAB (rs = .812, p = .000) was also correlated with their performance on 

the PCK1 assessment. These correlations suggest that inductive reasoning, and knowledge 

of mathematical concepts is associated with successfully solving tasks from the Bebras 

Challenge CT assessment. This makes intuitive sense, as the tasks on the PCK1, WJ-IV 

CF, and KTEA-3 MCA assessments involved recognizing an underlying rule or pattern, 

and applying mathematical knowledge. 

On standardized norm-referenced assessments included in the study, there were 

also several correlations that arose. First, performance on the WJ-IV CF1 was positively 

correlated with ratings on the CPS1 (rs = .510, p = .026), but not significantly with the 

CPS2. The WJ-IV CF2 was not correlated with either the CPS1 (rs = .119, p = .672) or the 

CPS2 (rs = .195, p = .504). There appears to mixed evidence for a consistent link between 

problem solving as measured by the WJ-IV Concept Formation subtest, and ratings of 

creativity as measured by the CPS pre and post-tests. Finally, participants who obtained 

higher scores on the KTEA-3 MCA Forms A and B tended to obtain higher ratings on 

both the CPS1 and CPS2 assessments, with correlation coefficients ranging from .681 to 

.799. These results aligned with the aforementioned correlations with participant PSSA 

performance and the CPS ratings, suggesting that participants who had greater 

mathematical conceptual knowledge generally were thought to respond in a more original 

and useful way to CPS item prompts. 
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CHAPTER 4 

RESULTS 

The current study aimed to identify the degree to which youth who participated in 

computer programming activities in the Scratch environment in a summer camp program 

1) demonstrated measurable changes in problem solving ability and creative thinking, and 

2) learned and applied computational thinking skills. The overall low N in each group 

required the use of nonparametric statistics for analyses; specifically, the Mann-Whitney 

U Test to explore group differences across the WJ-IV CF, KTEA-3 MCA, and CPS pre 

and post-tests; and Spearman’s rho (rs) to examine the relationship between demographic 

and assessment variables. 

RQ1: Problem Solving and Creative Thinking 

Results from independent samples Mann-Whitney U tests showed that the mean 

ranks of all assessment variables included in the analysis (WJ-IV CF1 & 2, KTEA MCAA & 

B, and CPS1 & 2) did not differ significantly across experimental and control groups, 

supporting retention of the null hypothesis. Group differences across assessments were 

analyzed in addition to change scores across each assessment. Results are displayed along 

with the N for each analysis, the mean rank, Mann-Whitney U value, p-value, and effect 

size when appropriate in Tables 4.1 and 4.2 below. 
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Table 4.1 

Mann-Whitney U Test Statistics Across Assessments and Group 

 
Experimental  Control  Mann-

Whitney 
U 

 Sig. 
(1-tailed)  N  Mean Rank  N  Mean Rank   

WJ-IV CF1 12  10.88  10  12.25  52.5  .318 

WJ-IV CF2 10  8.85  8  10.31  33.5  .292 

KTEA MCAA 12  9.17  7  11.43  32.0  .210 

KTEA MCAB 9  9.00  8  9.00  36.0  .509 

CPS1 11  9.82  8  10.25  42.0  .444 

CPS2 9  8.22  6  7.67  25.0  .420 

 

Table 4.2 

Mann-Whitney U Test Statistics for Change in Assessment Scores 

 N	
   	
   Mann-Whitney U 	
   Sig. (1-tailed)	
    h2 

 WJ-IV CF D 16  27.0  .792	
    .007 

 KTEA MCA D 14  22.0  1.00	
    .000 

 CPS D 12  7.50  .154	
    .191 

 

To further illustrate the lack of difference between groups across CPS 

assessments, Figure 4.1 displays the mean ratings of participants in both the experimental 

and control groups across dimensional and total scores for both the CPS1 and CPS2. 

Participants tended to provide responses to the CPS2 that were rated as less creative in 

both the dimensions of usefulness and originality. 
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Figure 4.1. Mean ratings on the CPS assessments 

RQ2: Computational Thinking Skills  

The conceptual framework underlying computational thinking skills assessed on 

both the PCK1 and PCK2 differed, so there was no direct method to test whether 

participants learned specific CT skills measured on the PCK1 from results on the PCK2; 

rather, to investigate whether participants who took both the PCK1 and PCK2 (n = 12) 

made any meaningful gains in CT skills after participating in the computer course, PCK1 

scores were assigned a rank value, and their ranked performance was then compared to 

their total scores on the PCK2. Figure 4.2 displays the ranked order of participant’s 

performance on the PCK1 and their total PCK2 scores to graphically illustrate that there 

was no clear trend in whether participants who did or did not perform relatively well on 

the PCK1 made gains or losses on the PCK2. A higher ranking denotes a lower score such 

that the “1” on the x-axis was the highest score, and the “12” was the lowest score. 
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Figure 4.2. Ranked Order of PCK1 Scores by PCK2 Scores Across Participants 
 

Total W scores on the PCK1 were not correlated with total scores obtained on 

PCK2 (rs = .289, p = .455), but there was some support for the difficulty level 

categorization of the PCK1 assessment, as the total number of correct answers across 

participants who completed the PCK1 assessment (n = 19) on items in difficulty level A 

was 24/95, 27/95 for level B; and only 12/95 for level C. In other words, participants 

tended to answer fewer of the most difficult items than the least difficult items on the 

PCK1. Figures 4.3 and 4.4 display the number of participants across both experimental 

and control groups that answered items of the PCK1 and PCK2 correctly. 
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Figure 4.3. Number of Correct Responses Across PCK1 Items 
 

 

Figure 4.4. Number of Correct Responses Across PCK2 Items 
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To understand whether participants who answered certain questions correctly on 

the PCK1 assessment tended to obtain correct responses on specific items from the PCK2 

assessment, items on each PCK assessment were correlated with one another. Using this 

method, correlations could be indicative of whether participants retained any prior-

existing CT skills required to correctly answer items on the PCK1, or whether items on 

the PCK1 assessed similar CT skills on PCK2. Items that showed a significant correlation 

using Spearman’s rho (rs) were then compared to one another across the CT skills and 

key programming concepts, as well as specific curricular content embedded within each 

item. There were four significant correlations found among items on the PCK1 and PCK2 

for which the details are presented below. 

There were two identical, significant correlations with the PCK1 Soccer Game 

item, and questions one (Move Cat to Donut) and five (Dinosaur Multiplication) from the 

PCK2 (rs = .625, p = .03). The CT skills and key programming concepts assessed in the 

Soccer Game item from the PCK1 were algorithmic thinking, evaluation, and “IF” 

condition, while the CT skills and curricular content assessed in question one from the 

PCK2 were sequences, and understanding of rotation, direction, and spatial orientation. 

The CT areas and curricular content assessed in question five of the PCK2 were 

sequences, loops, operators, data, and understanding of the “>” and “*” symbols, as well 

as understanding the concept of a variable. 

There was a perfect correlation between the Party Guests item of the PCK1 and 

question two (Guess Number) on the PCK2 (rs = 1.00). The reason for this perfect 

correlation was that there was only one participant who responded correctly on question 

two of the PCK2, and this participant also responded correctly to the Party Guests item 



www.manaraa.com

 

 96 

on the PCK1. There was also one participant who answered the Party Guests item of the 

PCK1 correctly, but did not complete the PCK2 assessment. The CT skills and key 

programming concepts assessed in the Party Guests item of the PCK1 were algorithmic 

thinking, decomposition, dependency, and graphs. The CT skills and curricular content 

assessed in question two of the PCK2 were conditionals, operators, data, and 

understanding of the “>” symbol, as well as understanding of the “ask” and “say” Scratch 

blocks. 

Finally, there was a significant correlation between the Blossom item of the PCK1 

and question four (Press Key to Move Parrot) of the PCK2 (rs = .632, p = .027). The CT 

skills assessed in the Blossom item of the PCK1 were evaluation and generalization, 

while the CT skills assessed in question four of the PCK2 were events, and understanding 

of the x and y axes. 
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CHAPTER 5 

DISCUSSION 

In lieu of the number of factors that limit the internal and external validity of the 

results, there were several notable findings that emerged, and may be important for future 

researchers and educators interested in the study of how and what ten to fourteen-year-

old children learn through computer programming activities, or for those interested in 

implementing the Creative Computing Curriculum. A discussion of important findings 

and their relation to future research or instructional endeavors is presented first, followed 

by a discussion of the limitations of the study. 

Notable Findings 

No group differences across assessment variables 

The results of Mann-Whitney U tests to answer the primary research question 

showed that there were no statistically significant differences between experimental and 

control groups in measures of problem solving (the WJ-IV CF and KTEA-3 MCA 

assessments) and creativity after participating in computer programming activities. In 

other words, ten to fourteen-year-old children who were provided with direct instruction, 

and who explored the Scratch programming environment through the Creative 

Computing (CC) Curriculum in a roughly two-week summer computer course, did not 

perform any better or worse on measures of problem solving skills and creative thinking 

ability than children who did not participate in similar activities during the same time 

period. The lack of any significant changes in problem solving or creative thinking skills 

between groups may be due in part to the short timespan over which youth engaged in 

computer programming activities, and also because youth explored and created with 
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Scratch at an introductory, or surface level, as opposed to a more in-depth and complex 

level. Previous studies showing gains in problem solving or creative thinking skills often 

involved larger treatment dosages over longer timespans, allowing youth to spend more 

time planning, developing, testing, and personalizing their projects. In the current study, 

children largely followed steps laid out in the CC Curriculum, and rarely reached a level 

of competency to branch off into their own original ideas. Furthermore, when they 

encountered malfunctions in their projects, they tended to quickly ask for help, or 

resorted to engaging in other, non-Scratch activities, rather than effectively engaging in a 

problem solving process. 

Another factor influencing the lack of any detectable learning gains on selected 

measures relates to the decision to exclude design journals recommended in the CC 

curriculum for the current study. As a result, many children either relied heavily on 

following the step-by-step procedures to complete CC lessons and activities, or strayed 

entirely away from the designated lessons, choosing to explore the Scratch environment 

in a somewhat indiscriminate fashion. Had there been more time devoted to emphasizing 

the importance of the planning and design phase in for individual projects, participants 

may have more effectively been able to conceptualize the steps and associated 

computational processes involved in realizing their desired outcomes. A theme 

discovered early on in the experimental group was that while participants expressed a 

desired goal for their Scratch project, they had trouble delineating the steps necessary in 

order to put together functional Scratch programs to reach their goals. One-on-one 

assistance provided by instructors often included a breakdown of the larger goal into 

smaller steps, and then translating those steps into Scratch code. Sometimes, this 
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individual assistance included math calculations, diagrams to explain the Cartesian 

coordinate system, or explanations of the function of specific code blocks in simplified 

language. Whether participants would have been able to experience more success in 

Scratch with greater attention to planning and design, and thus move more quickly 

through lessons with less frustration is not entirely clear; nonetheless, dedicating more 

time and energy in the design and planning phase, especially on more open-ended 

projects, may have allowed participants to better internalize key computational concepts 

and processes, and should be considered in future research. 

Lastly, the quality and pace of instruction between experimental and control 

groups differed, as feedback from the experimental group was taken into consideration 

for instruction with the control group, such that unsavory lessons and activities were 

removed from planned instruction for the control group, and more time was allowed for 

lessons wherein the experimental group reported high interest and satisfaction. As a 

result, participants in the control group were able to move more quickly through the CC 

curriculum, and engage in more complex lessons and activities; but, because the control 

trial phase of the study was completed after the experimental group had completed the 

class, results related to the primary research question of whether children who participate 

in computer programming activities demonstrated changes in problem solving skills and 

creative thinking were, thus, not affected. Rather, participants in the control group could 

have been more likely to learn more computational thinking skills through more refined 

and higher quality instruction and experience with Scratch. 
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Difficulty of Teaching the Creative Computing Curriculum in an Informal Learning 

Environment 

Due to the time of year in which the study took place, i.e., during the school’s 

summer break, many participants seemed to take on a vacation-mindset, such that they 

became frustrated with having to complete the assessments, and participate in a semi-

structured course despite having assented to the study prior to the beginning of summer 

program. This led to participants hurrying to finish assessments and CC lessons and 

activities, consequently affecting the validity of the results. The degree to which this 

summer-break mindset affected the children seemed to be most apparent during the 

beginning of the study when the daily routine of the summer programming was more 

novel. The token computer chip, positive reinforcement system was a preemptive attempt 

to boost motivation, and add extra incentive for the children to participate in computer 

programming activities. Additionally, the partnering school’s purchase of individual 

robotic kits for which participants earning a pre-determined number of chips could 

exchange was an attempt to further bolster motivation. These steps, however, did not 

seem to be entirely effective, particularly in the experimental group, where instructors 

were required to spend more time and energy responding to challenging attitude and 

behavior rather than focusing on individual and group instruction. After each 

instructional day, instructors collaborated to introduce lessons in more relevant ways, 

incorporating things that the youth expressed liking about the previous day’s lesson, and 

connecting CC lessons to the broader context of computer science and its application to 

real-world problems. Although participants appeared to take interest in these 
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supplemental and adjusted activities, they continued to express some frustration and 

discontent with CC curriculum lessons and activities. 

While the CC curriculum was developed to garner high interest and engagement 

among school age youth, there were a few lessons that did not go over well with 

participants in the current study, especially in the experimental group. For example, 

participants in the experimental group reported disliking the “10 Blocks” and “Orange 

Square, Purple Circle” lessons, and these lessons were subsequently removed or 

deemphasized from the planned sequence of lessons for the control group. The children 

seemed to become disinterested in working within the confines of these lessons, 

appearing to take more interest in creating their own projects with personalized media 

rather than being limited by rules constricting their use of various types of code or 

seemingly mundane shapes and objects. Future researchers or educators looking to use 

the CC Curriculum should keep these observations in mind when planning lessons and 

activities. 

In a further attempt to boost interest and engagement with CC curriculum 

activities, instructors taught participants how to upload media into Scratch, calculate 

beats-per-minute for their music video projects, and brainstorm ideas for stories and 

games. These instructional components were not explicitly part of the CC curriculum, but 

were well received by the majority of children, and should be considered for educators 

using the CC curriculum as a framework for teaching CT skills through Scratch in future 

endeavors. In this way, the CC Curriculum can serve as a launching point, or guide for 

instructors to use, but in order to effectively engage youth in Scratch programming 

activities, a degree of improvisation and flexibility is required. 
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The informal learning environment in which the current study took place, and 

other similar settings such as after-school enrichment programs, present challenges that 

should be taken into consideration for engaging youth more deeply with computer 

programming activities. Youth seem to approach this type of setting differently from the 

manner in which they might approach similar tasks in a more formal classroom learning 

environment. The children may have been more likely to engage with curricular material 

had they attended more regularly, and taken the lessons and tasks more seriously in a 

more formal, compulsory classroom setting. While some participants seemed to engage 

more effectively with the Scratch programming environment, and genuinely enjoy 

aspects of the lessons, others took a more relaxed and nonchalant approach to the 

material. Additionally, the amount of assessment time seemed to exceed developmental 

norms for this age group, and participants became frustrated with having to complete the 

battery of assessments selected for the study. Future studies should keep these 

observations in mind when selecting assessments, and planning for activities and lessons 

in this type of learning environment. 

The variability of engagement with the CC Curriculum was qualitatively noted in 

the current study, but not quantitatively analyzed. Future researchers should attempt to 

understand the process in which children work in the Scratch environment more closely 

than in the current study. Efforts by some researchers to extract Scratch project data files 

describing the code content and actions in children’s Scratch projects across specified 

time intervals has been one area in which this process-oriented approach as opposed to a 

more product-oriented approach is already being implemented (e.g., Fields, Quirke, 

Amely, & Maughan, 2016; Fields, Quirke, Horton, Maughan, Velasquez, Amely, & 
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Pantic, 2016; Pantic, Fields, & Quirke, 2016). In the current study, it would have been 

helpful to more systematically and quantitatively categorize participants into levels of 

Scratch engagement, and one way this could have been done would have been to 

introduce a structured observation system that either a researcher or analytic digital tool 

could use to gather information about what children are actually doing on their computers 

at specified time intervals by taking “snapshots” of their screens either digitally or in-

person. 

It may also be helpful for educators and researchers interested in using the CC 

curriculum or other Scratch-based lessons and activities to get a sense of learners’ 

knowledge as it relates to general computer literacy prior to beginning instruction. Using 

a pre-test of computer literacy could be helpful to determine how much time should be 

spent teaching youth how to download, convert, and save media files from the web, and 

locate them to upload into the Scratch environment, or understand nuances of both the 

computer and Scratch interfaces, i.e., keyboard shortcuts, right-clicking, etc. While the 

Scratch environment does offer a library of pre-loaded media to use, participants in the 

current study sometimes expressed a desire to incorporate their own media, and when 

they were taught how to do so (usually with one-on-one instruction), they generally 

became more interested in the project they were creating. This seemed to result in a more 

meaningful experience with Scratch, and it is possible that by tapping into the personal 

appeals of learners, that lessons and activities may become meaningful and engaging for 

youth. Consequently, youth may be better able to learn CT skills when it is not viewed as 

just another academic exercise. Of course, understanding what is meaningful to varying 

populations of children will undoubtedly differ across ages, settings, and regions; 
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nonetheless, it is an important consideration to make when implementing the CC 

Curriculum or similar guides. 

Similarly, it became evident that many children did not understand some 

fundamental mathematical concepts required to effectively create projects with their 

desired functions and outcomes. For example, many participants needed direct instruction 

on the Cartesian coordinate system, understanding of angles and rotation, recognizing 

inequalities, and conceptualizing variables. By obtaining a gauge of children’s knowledge 

of these key math concepts necessary for many aspects of Scratch programming prior to 

instruction, a more targeted approach to teaching necessary mathematics skills could take 

place, and result in less frustration and more success in Scratch. While the KTEA-3 MCA 

was used to measure changes in learning in the current study, future studies should first 

analyze the requisite skills needed for activities, and then pre-test children on these skills 

in hopes of identifying gaps to be filled before or during instruction. 

Difficulty Assessing Computational Thinking 

Results from the PCK assessments to answer the secondary research question 

were difficult to analyze and interpret given their differing conceptual frameworks, as 

well as the overlapping of CT skills with specific curricular content within items. 

Furthermore, the lack of correlation between the PCK pre and post-tests may be 

indicative of misalignment of skills assessed with each measure, but could also be related 

to the fundamental conceptual differences of each assessment. It was difficult to know 

whether participants who answered certain questions on the PCK1 and PCK2 assessments 

correctly were employing the same CT skills, or whether there was an alternative reason 

that participants tended to answer these questions correctly. For example, the Soccer 
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Game item from the PCK1 was correlated with questions one (Move Cat to Donut) and 

five (Dinosaur Multiplication) on the PCK2. Perhaps participants used similar algorithmic 

thinking and evaluative CT skills in answering the Soccer Game question from the PCK1 

and questions one and five of the PCK2, but there was no way of knowing besides 

analyzing the nature of each task on a granular level post hoc. On the surface, however, 

there seemed to be few similarities between these questions on both PCK assessments. 

Without direct observation or interviews with the children, understanding how they 

managed to think through problems was not possible. A more interactive, computer-

based assessment capturing participants’ processes-in-action through analysis of their 

actions as they completed items either through direct observations and interviews, or 

through JSON file analysis would have been a more valid measure of CT skills, and 

easier to interpret. Future studies looking to understand how and what children learn as it 

relates to CT skills and areas should consider this aspect when selecting and designing 

assessments. 

The PCK1 assessment (the 2016 USA Bebras Challenge) was selected as a pre-

test of CT skills and knowledge due to its attempt to assess CT skills without relying on 

prerequisite syntactical knowledge of specific programming languages, but there have 

been critiques of its validity in assessing CT skills. For example, Izu et al. (2017) notes 

that researchers have found a correlation between the length of Bebras Challenge’s task 

and perceived difficulty in elementary students. Similarly, the linguistic demands across 

items of the Bebras Challenge are thought to be a major barrier to obtaining correct 

responses (Yagunova, Podznyakov, Ryzhova, Razumovskaia, & Korovkin, 2015). With 

this notion in mind, one reason why participants may not have correctly answered items 
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on the PCK1 could have been that they were not able to understand or comprehend the 

premise of the question because there were too many factors to retain within their 

working memory, or the language was too complex. Without a direct measure of working 

memory or reading comprehension, however, this supposition was unable to be tested in 

the current study, but may be helpful in future endeavors. Similarly, for the PCK2, 

participants may have been unable to attend to all the details embedded within each item, 

overlooked key details, or misunderstood mathematical symbols of the item content and 

response choices. Also, unlike some items of the PCK1, the PCK2 did not allow for 

immediate feedback, testing, and debugging –a key CT process –due to the fact that it 

was administered as a paper-pencil test for practical purposes. 

The measurement of CT skills on the PCK2 may also have been confounded by 

items inclusion of specific curricular content using various Scratch codes and sequences, 

as opposed to the more theoretical and abstract tasks comprising items of the PCK1 

assessment. Perhaps the PCK1 would have been a more direct measure of CT skills 

learned after participating in computer programming activities; however, with this type of 

design, practice effects would have confounded an identical post-test. Furthermore, 

within this hypothetical paradigm, learning of specific curricular content could not have 

been assessed. Relatedly, the items comprising the PCK2 were either independently 

developed, or borrowed from the “Coding Quiz” utilized in Straw, Bamford, and Styles 

(2017), as opposed to validated and normed on a large sample of children. This made 

generalizing performance on the PCK2 beyond the context of the current study 

impossible. 
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A think-aloud procedure, or post-assessment interview with participants may have 

been able to shed more light onto the process in which they answered each question, and 

thus, allowed for comparisons to be made between participants’ actual approach to 

working through the problems, and the authors of the Bebras Challenge suggested 

approach to working through the problems. This methodology, however, is not without 

its practical limitations, as transcribing, coding, and qualitatively analyzing participant 

descriptions of their thought processes is rather labor intensive. Similarly, on the PCK2, a 

think-aloud procedure or post-assessment interview may have resulted in greater insight 

into the strategies children used to answer each question. This method, however, is 

limited by the amount of time required to collect and analyze narratives, as well as 

children’s own ability to describe their thought processes given their variable language 

skills 

Limitations 

The results of the current investigation should be interpreted cautiously as there 

were a variety of factors that impacted the planned research design, assessment 

procedures, and classroom instruction. The first and foremost limiting factor was the 

overall low sample size, as well as the varying number of assessments completed by each 

participant in both experimental and control groups. Consequently, there were many gaps 

in pre/post assessments across time-points and participants. Furthermore, there were four 

participants in the control group who only attended for the initial assessment phase of the 

study, and two participants in the experimental group who also only attended for the 

initial assessment phase of the study. Relatedly, attendance was inconsistent, meaning 

that the amount of instruction and experiential time with the CC curriculum and 
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associated lessons and activities varied widely across participants within and between 

groups. The generalization of the findings is, therefore, minimal, and in some ways 

questionable even within the context of the study. 

Another way in which the study may be limited relates to group differences. 

Although participants demonstrated similar variance in obtained scores across measures, 

there were two notable differences between participants in the experimental and control 

groups. First, about twice the rate of participants in the control group reported having a 

desktop computer at home. Because lessons and activities in the CC curriculum were 

delivered and explored through desktop computers, youth with desktops at home may 

have been in a position of more familiarity with the desktop computer interface, resulting 

in more efficient engagement with the course content than those who did not have 

desktop computers at home. Second, participants in the experimental group reported a 

higher rate of previous experience with computer coding or programming than in the 

control group. Although there were no positive correlations related to previous 

experience with coding or computer programming and assessment variables either by 

group or by overall sample, it may have impacted motivation in the experimental group, 

as the Scratch environment may have been too familiar and subsequently uninteresting to 

them; thus, lowering their motivation to complete lessons. Alternatively, prior coding or 

computer programming experience was not quantified or explored beyond a simple “yes” 

or “no” response on the CUQ questionnaire. Youth may have fundamentally 

misunderstood what “coding” or “computer programming” activities entailed, or only 

participated in brief introductory exercises such as Code.org’s popular “Hour of Code” 

program. 
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There were also some logistical concerns related to curriculum implementation 

and assessments selected and developed for the study that also limit the internal validity 

of the study. First, the amount of instructional time differed for experimental and control 

groups, as there was a scheduling miscommunication that resulted in the loss of nearly 

one week of instructional time for the experimental group, and two weather-related 

school closures that prevented participants in the experimental group from gaining 

additional experience with CC lessons and activities. Due to this scheduling 

miscommunication, participants in the experimental group completed time-point two 

assessments one week after engaging in CC lessons and activities. With this one-week 

delay from completing CC lessons and activities to completing the PCK2 assessment, 

participants in the experimental group may not have remembered the functions of various 

code blocks, and thus performed more poorly than if they had completed the assessment 

closer to the time when they finished CC lessons and activities, as the control group did. 

Regardless of the differences in the total number of instructional and experiential 

hours between the control and experimental groups, the total duration of the course (i.e., 

the treatment dosage) may not have been enough to affect statistical or meaningful 

change in learning, or the selected assessments may not have been sensitive enough to 

change within the relatively short test-retest time interval. Relatedly, instructional hours 

were not necessarily instructional, but rather, a mix of independent or guided exploration 

in Scratch, supplemented by occasional one-to-one assistance and whole-group 

instruction. Some children relied more heavily on the Scratch workbooks than others, 

while others preferred to learn how to use the Scratch environment on their own by more 

of a trial-and-error, or haphazard style. Still, other children tended to experience 
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frustration with lessons and activities, and when instructors were not immediately able to 

provide assistance, these children often engaged in other computer activities, i.e., 

watching YouTube videos or playing non-Scratch games on the web. The actual amount 

of Scratch-engaged time, thus, varied considerably across participants, and there was no 

direct way to measure the amount of time each participant spent actually manipulating 

code blocks to complete lessons and create projects. In an attempt to reduce non-Scratch 

computer activities, the instructors instituted class wide rules aimed at relegating 

computer usage to only Scratch based activities with repeated noncompliance resulting in 

a locked computer screen; however, these rules were met with great resistance, and were 

difficult to enforce without major disruption in classroom activities. Subsequently, for the 

sake of the children who were engaging appropriately with the CC lessons and activities, 

instructors chose to allow participants to move to non-Scratch activities after completing 

one lesson or task. This resulted in some children spending more time in non-Scratch 

activities than others. 

Similar to the aforementioned possible link between length of PCK1 items, and 

perceived difficulty of the item, the items comprising the CPS assessments may have 

been written at too high of a level of linguistic and conceptual complexity for participants 

to truly grasp the task. This notion was reflected in the large proportion of raters 

indicating that they thought a participant had misinterpreted or misunderstood items. The 

CPS assessments were developed using Kim, Chung, and Yu’s (2013) synthetic creative 

problem solving test, which was a study that included a group of South Korean students 

classified as gifted, in addition to those who were not classified as gifted. Although the 

language of items comprising both the CPS1 and CPS2 was adjusted to reflect linguistic 
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and cultural differences, it did not undergo a validation procedure to ensure youth in the 

urban mid-Atlantic region of the United States were able to comprehend the prompts. 

Furthermore, the lack of agreement, and in fact, evidence for more disagreement 

among raters, suggests that raters did not view the originality and usefulness dimensions 

of creativity in the same way for the same children. With more qualified raters 

undergoing more comprehensive training on the consensual assessment through rating a 

variety of mock participant responses designed to represent predetermined degrees of 

originality and usefulness, there may have been a higher degree of inter-rater reliability. 

Lastly, as it relates to the CPS assessments, although each rater was provided with 

participant responses to both CPS assessments in different orders, and one of the three 

raters was provided with a reversed presentation of item prompts, the raters’ assessment 

packets were organized by CPS1 and CPS2. Therefore, raters may have become fatigued, 

or changed their internal criteria of usefulness or originality throughout the course of 

seeing participant responses depending on which of the CPS assessments they looked at 

first. If all participant responses to each CPS assessment had been shuffled into an 

overarching response packet with a random order of CPS1 and CPS2 assessments, any 

order effects would have been reduced. 

Another limiting factor was the measure chosen to assess mathematical problem 

solving ability. The KTEA-3 Math Concepts and Applications subtest focused on the 

conceptual component of mathematics rather than calculation skills, or operational 

component of mathematics. While it was hypothesized that children engaging in 

computer programming activities would acquire more mathematic conceptual knowledge, 

success with achieving a desired goal in Scratch was often paired with specific math 
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calculation skills; therefore, a direct assessment of calculation skills may have been a 

more appropriate measure of mathematical thinking as it relates to realizing desired goals 

of Scratch projects. 

Finally, the WJ-IV CF test was artificially split into a pre and post-test, making an 

already difficult test to administer even more difficult. Despite efforts made to ensure that 

research assistants demonstrated administrative competency during individual training 

sessions, there were still three administration errors on the pre-test (WJ-IV CF1), and on 

all three occasions, assessors discontinued the test, mistakenly believing that the youth 

had reached the discontinue criterion at one of two decision points. All three errors were 

also all for participants who were in the experimental group, resulting in a possible 

underestimation of these participants’ ability to apply inductive reasoning to solve 

problems; however, these participants’ performance on the WJ-IV CF2, where there were 

no administration errors, was less than or equal to their performance on the WJ-IV CF1, 

so it may have been possible that they would not have obtained any additional points 

even if administration errors had not occurred on the pre-test. 

Conclusion 

The study of computational thinking and its component cognitive processes is ripe 

for expansion and clarification. Ongoing efforts to further decompose and delineate the 

development of CT skills will be important to better inform both general and CS specific 

educators on developmental expectations across age bands, and incorporate effective 

instructional strategies and curricular content. From the results of the current study, it is 

clear that informal learning environments such as a summer “camp” setting present a 

number of challenges related to attendance and motivation. It was also clear that the 
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Creative Computing Curriculum activities and lessons needed to be altered to bolster 

participants’ engagement with computer programming activities. The lack of differences 

between groups across measures related to problem solving and creativity may have been 

related to the somewhat low treatment dosage and short time span of the study (roughly 

25 hours over two weeks), in addition to the more introductory level of engagement with 

curricular material. Lastly, the measurement of CT skills and processes was difficult to 

interpret given the selected measures for the study, and future research or instruction 

should consider additional efforts to more thoroughly explore what is going on in the 

minds of children as the attempt to engage in computational thinking practices through 

differing assessment methods. 

One area that may be of particular importance for future research and computer 

science education is the language used by instructors, and embedded within lessons and 

activities to describe CT skills and processes. The way in which instructors describe what 

to do as it relates to key CT concepts is important to consider, and has been suggested as 

critical for educators to operationally standardize in order for student clarity and 

understanding (Waite, Curzon, Marsh, Sentence, & Hadwen-Bennet, 2018). The 

language embedded within the categories and names of code in the Scratch programming 

environment are designed to be intuitive, but children often needed additional, repeated 

explanations of the function of various code blocks throughout lessons and activities of 

the CC curriculum. CS educators should be cognizant and conscious of the type of 

language they use to describe computer programs, understanding that the 

conceptualization of key computational processes is highly dependent on the language of 

instruction. 
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While there is much work to be done, and despite the many challenges and 

obstacles to overcome, understanding the implications for incorporating CT activities and 

lessons within the general education curriculum will only gain momentum as computer 

science grows in its importance for shaping the modern world. 
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APPENDIX A 

CREATIVE PROBLEM SOLVING PRE-TEST 

 

CPS$Pre'test$

Much$of$the$worlds’$oceans$have$yet$to$be$explored.$To$explore$the$ocean,$high'tech$
machines$and$equipment$are$needed.$In$the$deep$parts$of$the$ocean,$there$are$mysterious$
animals,$underwater$volcanoes,$and$resources$that$people$can$use.$There$may$even$be$
things$that$no$one$has$ever$seen$before!$

Invent$something$to$explore$the$deep$ocean.$This$invention$must$be$able$to$work$in$the$
deepest$parts$of$the$ocean.$Draw$your$invention$using$the$given$shapes.$Name$and$explain$your$
invention$by$describing$the$usefulness$of$the$invention$in$detail.$You$can$use$each$shape$more$
than$once$and$shapes$can$be$combined.$
$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'1'
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CPS$Pre'test$

Countries$across$the$world$have$realized$that$they$need$to$conserve$energy$resources$to$
protect$the$environment.$Bicycles$are$good$because$they$do$not$use$up$energy$resources$or$
pollute$the$environment.$What$would$you$do$to$improve$the$disadvantages$of$the$current$bike?$
Write$as$much$as$possible$about$an$idea$to$upgrade$anything$about$the$bike$that$is$
inconvenient.$
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$
$
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$
$
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Prompt'2'
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CPS$Pre'test$

When$baseball$was$created,$it$was$different$than$it$is$now.$Today,$baseball$combines$a$ball$with$
a$wooden$bat.$Come$up$with$a$creative$invention$by$combining$two$unrelated$things$or$objects.$
Put$a$name$to$your$invention$and$write$about$why$you$decided$to$create$the$invention.$
$
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Prompt'3'
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CPS$Pre'test$

An$idea$sketch$is$used$to$show$your$thoughts$through$pictures.$The$pictures$could$include$
comics,$scribbles,$tables,$maps,$and$simple$words.$Imagine$that$you’re$with$someone$who$
doesn’t$know$our$language.$You$have$to$explain$the$words$below$to$communicate$with$him$or$
her.$Using$an$idea$sketch,$help$this$person$understand$as$many$words$of$our$language$as$
possible.$
$

$
$

Word' Pictures' Word' Pictures'

pollution$

$

color$

$

sound$

$

active$

$

sour$

$

mixture$

$

wrong$

$

life'cycle$

$

light$

$

coal$

$

Prompt'4'
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CPS$Post(test$

$

The$mysteries$of$outer$space$are$yet$to$be$discovered,$and$our$ability$to$understand$what$
may$lie$beyond$our$own$planet$is$becoming$easier$as$science$and$technology$advance.$To$
explore$outer$space,$scientists$and$engineers$have$to$come$up$with$new$methods$and$
machines$to$handle$the$harsh$environment$of$deep$space.$

Invent$something$to$explore$outer$space.$The$invention$must$be$able$to$work$in$the$deepest,$
darkest$parts$of$space,$and$also$on$different$planets$that$may$have$very$different$
environmental$conditions$than$Earth.$Draw$your$invention$using$the$given$shapes.$Name$and$
explain$your$invention$by$describing$the$usefulness$of$the$invention$in$detail.$You$can$use$
each$shape$more$than$once,$and$shapes$can$be$combined.$

$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'1'

APPENDIX B 

CREATIVE PROBLEM SOLVING POST-TEST 

  



www.manaraa.com

 

 140 

CPS$Post(test$

$

Brooms$make$it$easier$to$do$housework$such$as$cleaning$the$floor.$Although$brooms$have$been$
around$for$hundreds$of$years,$the$design$of$the$broom$has$not$changed$much.$What$would$you$
do$to$improve$on$the$disadvantages$of$the$current$broom?$Write$as$much$as$possible$about$an$
idea$to$upgrade$anything$about$the$broom$that$is$inconvenient.$
$
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CPS$Post(test$

$

The$first$people$who$caught$fish$used$much$more$simple$equipment$than$today’s$rods$and$
reels.$The$first$fishing$pole$was$probably$a$stick$with$rope$and$a$bone$hook$tied$to$it.$Come$up$
with$your$own$creative$invention$by$combining$two$unrelated$things$or$objects.$Put$a$name$to$
your$invention$and$write$about$why$you$decided$to$create$the$invention.$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
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$
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www.manaraa.com

 

 142 

 

  

CPS$Post(test$

$

An$idea$sketch$is$used$to$show$your$thoughts$through$pictures.$The$pictures$could$include$
comics,$scribbles,$tables,$maps,$and$simple$words.$Imagine$that$you’re$with$someone$who$
doesn’t$know$our$language.$You$have$to$explain$the$words$below$to$communicate$with$him$or$
her.$Using$an$idea$sketch,$help$this$person$understand$as$many$words$of$our$language$as$
possible.$

$

Word' Pictures' Word' Pictures'

energy$

$

weight$

$

smell$

$

lazy$

$

sweet$

$

machine$

$

correct$

$

recycle$

$

dark$

$

plastic$

$

Prompt'4'
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APPENDIX C 

TYPE T QUESTIONNAIRE 

  
  

Read the statements below and circle how much they fit with who you are as a person. 

  
    

1.   I  like  to  do  exciting  things	
   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

2.   I  enjoy  taking  chances   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

3.   I  like  people  who  are  really  different  from  me   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

4.   I  like  to  make  up  my  own  mind   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

5.   Someday  I  would  like  to  drive  a  race  car  in  a  fast  race   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

6.   I  like  thinking  about  really  unusual  things   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

7.   I  like  to  do  things  real  fast  without  thinking  too  much  about  it   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
  

8.   I  enjoy  trying  new  and  different  food  that  I’ve  never  had  before   NEVER	
   A	
  LITTLE	
  
BIT	
   A	
  LOT	
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Mazes  
A 

Castors: 
Benjamins: 
Cadets: 
Juniors: 

Juniors: 
Seniors: 
 

 
 

A robotic car uses a simple rule to drive through a maze:  

 Turn right whenever possible. 

The picture on the right gives an example  
of how the robot would drive through a maze. 

Question: 
In how many of the following mazes will the car reach the red dot if it uses this system? 

 

 

 

 

 

 Maze A         Maze B      Maze C         Maze D 

Choose from: 0 1 2 3 or 4 

Answer: 

Explanation: 
In the pictures below, the green arrow indicates the path taken by the car. In Maze C the whole 
center part of the maze is not visited and the red dot is not reached. In all other cases the red dot 
is reached. 

It’s Computational Thinking: 
CT Skills - Algorithmic Thinking (AL) 
CS Domain - Algorithms and programming 

The method which is used by our car, is called the wall follower. It is one of the simpler 
techniques (algorithms) to solve a maze for which you do not know the layout in advance. By 
following this rule you will never get lost: you will always return to the starting point eventually. 
However, as can be seen by our example, it does not guarantee that you will visit the entire 
maze. 

Maze C 

APPENDIX D 

USA BEBRAS CHALLENGE 2016 QUESTIONS AND ANSWERS  
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Soccer Game  
A 

Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 

 

The Beaver Rangers have been playing a soccer game against the Forest Raiders. 

 

Here are the goal scorers: 

minute 1: Anna 
minute 10: Dick 
minute 35: Bernard 
minute 47: Smithy 
minute 73: Backy 
minute 89: Richard 

2016-US-07b 

Question: 
If we know that only one team manages to score two goals in a row, which of the following 
cannot be the final score? 

 3-3 5-1 2-4 or 4-2 

Answer: 

Explanation: 
There are three possible final standings in this game. If one team scores first and the other team 
scores 2 in a row the final standing will be 3-3. If the first team scores first and also scores two in 
a row then the final standing will be 4-2. If the second team scores first and also scores two in a 
row then the final standing will be 2-4.  

It’s Computational Thinking: 
CT Skills - Algorithmic Thinking (AL), Evaluation (EV) 
CS Domain - Algorithms and programming 
Tags - IF conditions 

The solution to this problem is a nested if statement: The first if statement checks which team 
scores first. The second if statement checks if a team scored two goals in a row.  

5-1 
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Bottles B 
A 

Castors: 
Benjamins: 
Cadets: 

Juniors:  
Seniors: 

A Beaver puts five bottles on a table. 
He places them so that every bottle has a bit showing. 
He places the first bottle at the back of the table and puts each new bottle in front of those 
already placed. 

Answer: 

E D C B A 

Question: 
In what order are the bottles placed when they appear as shown in the picture? 

E D C B A 
D B C A E 
E C D A B 
D C E B A 

Explanation: 

It’s Computational Thinking: 
CT Skills - Abstraction (AB), Evaluation (EV) 
CS Domain - Data, data structures and representations 

This is basically a sorting problem. You are asked to sort the bottles in a specific way. Here, 
shapes and sizes are important. One has to decide the ordering according to these properties. 

You can try to solve this different ways. If you figure out that the thin bottle should be at the 
front otherwise it will disappear behind one of the other bottles, you already know that A has to 
be in front. You can try that with each bottle in turn until you solve the task. You can also check 
which bottle is large at the top or middle, since in those places the bottles differ most. Small 
bottles need to be in front. 
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Tube System B 
A 
 

Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

A mouse is at the entrance of a tube system. It wants to reach the cheese at the end of tube 5. 
The mouse always follows these commands: 

    1. Go downwards until a crossing 
    2. At the crossing, move through to the next vertical tube 
    3. Go to command 1 

Question: 
In which tube should the mouse start so that it reaches the cheese? 

 1  2  3  4  or   5 

Answer: 

Explanation: 

It’s Computational Thinking: 
CT Skills - Algorithmic Thinking (AL) 
CS Domain - Algorithms and programming 

Many robots are programmed so that they have to follow exact commands. This mouse does the 
same thing: it follows the commands ‘go downwards’ and ‘change directions at the next crossing’ 
over and over again. These kind of commands depend on the choice of the tube entrance as to 
which way the mouse runs in the tube system. Most computer programs are deterministic: if you 
always input the same data, the program performs the same calculations and delivers the same 
output. 

3 

From tube 1 the mouse always reaches tube 3.  
From tube 2 it reaches tube 1.  
From tube 4 it reaches tube 2. 
From tube 5 the mouse gets to tube 4. 
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Party Guests B 
A 
A 

Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 

 
 

To arrange a dinner party Sara the beaver needs to talk to five friends:  

Alicia, Beat, Caroline, David and Emil. 

Sara can talk to Emil right away. However, to talk to her other friends, there are a few points to 
consider: 

1- Before she talks to David,        she must first talk to Alicia. 
2- Before she talks to Beat,          she must first talk to Emil. 
3- Before she talks to Caroline,     she must first talk to Beat and David. 
4- Before she talks to Alicia,          she must first talk to Beat and Emil. 

 

Drag the names into the right order. 
Question: 
In what order should Sara talk to all of her friends if she wants to talk to all of them? 
Drag the names into the right order. 
 
 
 

   ⇒      ⇒          ⇒       ⇒ 

Alic ia  Beat C aroline David  Emil 
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Secret Recipe Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 

Eszter has asked István to cook a special cake made of five ingredients. 
She has put labels next to the ingredients in the garden. One ingredient has no label. 
The labels tell István in what order the ingredients must be added.  

The garden looks like this: 

Question:  
Which ingredient should be added first? 

C 
B 

Answer: Explanation: 

If Eszter starts with the flower, she can add all five ingredients in the right order. 
The first added ingredient must be the one with no referring image. 

Choosing the strawberry, she could not have continued to the next as there is no 
paper with it. The apple is not correct because if she had started with the apple, she 
would have skipped the red flower. The pine cone is not correct because if she had 
started with the cone, she would have skipped the red flower and the apple. 

It’s Computational Thinking: 
CT Skills - Algorithmic Thinking (AL), Decomposition (DE) 
CS Domain - Data, data structures and representations 

The data structure used here is called a linked list in which there can be an arbitrary number of 
items. A linked list is a linear collection of data elements that consist of an item and a reference 
point  (pointer) showing the next item. The first item of the linked list is very important as the 
list starts from there and it is the only point that refers to the whole list. 

The recipe here is a linked list. The ingredients are the items and each slip of paper is the pointer 
to the next item in line. In other words the plants are the data and the slips of paper are the 
pointers. The first component is that ingredient which is not referred by any paper, but 
accompanied by a paper. 

The benefit of the linked list is that items of different types and sizes can be stored together, just 
like fruits and flowers in this question.  
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Car Trip Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

 

A self-driving car needs to take a student 
to school.  
The car is programmed so that it only use 
these 3 instructions: 
Left:  turn 90° left 
Right:  turn 90° right 
Forward:  go forward until you cannot 
go forward anymore 

C 
B 
A 

Answer: 

Question: 
Write a set of instructions (a program) that will get the beaver to his school. You can do this by 
dragging the three instruction blocks next to the car. 

Explanation: 

CT Skills - Algorithmic Thinking (AL), Decomposition (DE) 
CS Domain - Algorithms and programming 

The task is similar to giving instructions to a robot: writing a computer program requires step 
by step execution. Programs are essential to our use of computers: they tell computers what 
sequences of operations they must do. Computers and robots are good at computing fast, doing 
repetitive things, but they cannot think just by themselves, and require instructions to perform 
tasks. As shown in this task, the order of the operations is very important: the right set of 
instructions in the wrong order will not give the expected result. 

The important thing for participants to remember is that there is no forward movement when 
turning 90 degrees, so the 'straight' command has to be entered between every turn.  

It’s Computational Thinking: 
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Robot Exit 

Explanation: 

It’s Computational Thinking: 
CT Skills - Algorithmic Thinking (AL) 
CS Domain - Algorithms and programming 

In computer programming, a loop is a sequence of instruction's that is continually repeated until 
a certain condition is reached.  

Typically, a certain process is done, such as getting an item of data and changing it, and then 
some condition is checked such as whether a counter has reached a prescribed number.  

If it hasn't, the next instruction in the sequence is an instruction to return to the first instruction 
in the sequence and repeat the sequence. If the condition has been reached, the next instruction 
"falls through" to the next sequential instruction or branches outside the loop.  

A loop is a fundamental programming idea that is commonly used in writing programs. 

Castors: 
Benjamins: 
Cadets: 

Juniors 
Seniors: 
 

 

Help the green robot to exit the maze. 

The robot will repeat your instructions 4 times. 

Question: 
Drag the arrows to form a set of instructions.  

C 
B 
A 

In mobile robotics, maze problem solving is one of the most common problems. To solve this 
problem, an autonomous robot is used. Mazes can be of different kinds; having loops, without 
any loops, grid systems or without a grid system. In this short loop maze algorithm, the robot is 
instructed to follow a preference of directions. 

Answer: 
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Party Banner 

Answer: 

31 

Explanation: 

We know the pattern ended with YRR, meaning that the James has cut out at least one B.  After 

that, he cuts out some number of sequences of 4 (i.e., YRRB).  After that, the right side of his 

piece of paper must have YR, since the second piece begins with RB.  So, the length of his piece of 

paper is 1 (for B) + 4*X (where X is the number of repeated patterns YRRB) + 2 (for the YR).  So, 

the length of her paper is 4X+3.   

Looking at the possible answers, we see that 31/4 has remainder 3:  that is, 31 = 4*7 + 3.  So, our 

equation is solved when X=7.  None of the other answers can be written as 4X+3. 

It’s Computational Thinking: 

C 
B 
A 

Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

 

Beaver Bert has a long strip of colored paper for a party. 
The strip has three different colors (yellow, red, blue) in a regularly repeating pattern. 
Bert's friend, James, has cut out a section of the paper, as shown in the diagram below. 

 

 

James says that he will give back the missing piece of paper if Bert can correctly guess the size of 

the piece cut out. 

Question: 
How many colored squares does the missing piece of paper have? 

 31 32 33 or 34 

CT Skills - Abstraction(AB), Evaluation (EV), Generalisation (GE) 
CS Domain - Algorithms and programming 

Finding a pattern in information is important for a variety of problems.  For instance, sequences 

of DNA are composed of patterns, and finding repetitions or substrings that satisfy a certain 

property is an important research area in genetics and medicine.  To solve these sorts of 

problems, we use text processing algorithms and pattern-matching programs to help determine 

whether certain strings appear in a sequence of text. 

This problem also involves some abstraction and generalization:  We take a sequence of 

information and generalize it into a formula or equation which we can solve.  In order for 

computer scientists to solve problems, they need to take an explanation and convert it into 

something more concrete, formalized and mathematical in order to write a program to solve it. 
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Beaver Code B 
B 
A 

Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

So Barbara” becomes: 
 
She then writes the names of her friends. Unfortunately they all got mixed up. 

Question:  
Drag the sun-flower-codes to the names of her four friends. 

Barbara has been given two stamps.  
With one she can produce a little flower, with 
the other a little sun.  
Being a clever girl, she thinks of a way to write 
her own name by using the code below: 

Letter B A R E Y 
Code      

 

Abby  
Arya  
Barry  
Ray  
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 Answer: 

Explanation: 

It’s Computational Thinking: 
CT Skills - Algorithmic Thinking (AL), Decomposition (DE), Generalisation (GE) 
CS Domain - Data, data structures and representations 
Tags -  

Often in Computational Science, instead of storing data in a simple and straightforward way, we 
can devise a scheme to store it more efficiently, using less space.  
For instance, computers store information about characters that can be typed on the keyboard 
in what is called an ASCII encoding.  Each letter corresponds to a different sequence of 8 bits (0's 
and 1's).  In ASCII, every character takes the same amount of space. 
However, letters have different frequencies in texts (for example, the letter “E” is the most 
common letter in English words), and we can use these frequencies to improve our encoding.  
Specifically, we encode frequent letters with smaller codes: in this question, B should be 
frequent and takes one symbol, A two, and the other letters more. There is a famous and widely 
used algorithm to do this for texts, named the Huffman coding. You cannot however use any 
encoding you wish: you have to make sure the code is unambiguous. For example, suppose the 
code was the following: Letter B was one flower, letter A was two flowers. 
What do two flowers mean? It could be BB or A, but we have no way to know which one for sure. 
One way to achieve unambiguity is to make sure the code is prefix-free; that is if we take the 
code of a letter, it is not the beginning of any other code. 
Also, since the Huffman code used depends on the text itself (it depends on the frequencies of 
letters), it is necessary to store the correspondence between the code and the actual letters. This 
takes a bit of space, but is negligible for long texts. 

3 

This problem is most easily solved by noting that Abby starts with an A and a B and so we look 
for a code with two suns and a flower at the start. There is only one of these so this is assigned. 
Next it is noted that Arya's code begins with three suns and a flower. Again there is only one of 
these so this is assigned. By continuing in this way, all the codes are quickly assigned to the 
correct names. 

Beaver Code 
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Blossom Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

 

Jane is playing a computer game. 
First the computer secretly chooses colors for five buds. The available colors for each flower are 
blue, orange, and pink. Jane has to guess which flower has which color. She makes her first five 
guesses and presses the Blossom button.  
The buds, whose colors she guessed correctly, break into flowers. The others remain as buds. 

 

Jane's first go: 
 
 
 
 
 
Jane then has another go at guessing and presses the Blossom button again. 

 

Jane's second go: 

Question:  
What colors did the computer choose for the flowers? 
A. blue pink blue orange orange 
B. pink blue blue blue orange 
C. pink blue blue pink orange 
D. pink pink blue pink orange 

 
C 
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 Answer: 
C. pink blue blue pink orange 

Explanation: 

It’s Computational Thinking: 
CT Skills - Evaluation (EV), Generalisation (GE) 
CS Domain - Algorithms and programming 

Drawing consequences from events that happened or did not happen is an important ability for 
solving many kinds of problems. The task is a simplified version of the Mastermind board game. 
It is simplified because after each guess the player gets complete information about all the 
flowers. If in each guess the player chooses a different color for the not-yet-blossomed flowers, 
then in the third guess he/she can always correctly pick the colors of all the flowers. 

After two guesses there are three blossomed flowers. So we can already see the color chosen by 
the computer for the first, third and fifth flower. The color of the first flower is pink, so answer 
A) cannot be correct. 
For the second flower Jane guessed pink in the first guess and it did not blossom, then she 
guessed orange and it did not blossom either. As there are only three colors available, the 
second flower must be blue. This rules out answer D). 
Similarly, Jane chose orange and blue for the fourth flower and it still has not blossomed, so it 
must be pink. And this rules out answer B)  

Answer C) must therefore be correct. 
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Magic Potions Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

A 
A 

Betaro Beaver has discovered five new magic potions: 

one makes ears longer 
another makes teeth longer 
another makes whiskers curly 
another turns the nose white 
the last one turns eyes white. 

 

Betaro put each magic potion into a separate beaker. He put pure water into another beaker, so 
there are six beakers in total. The beakers are labeled A to F. The problem is, he forgot to record 
which beaker contains which magic potion! 

 

 

To find out which potion is in each beaker, Betaro set up the following experiments: 

Expt 1: A beaver drinks from beakers A, B and C together - the effects are shown in Figure 1. 

Expt 2: A beaver drinks from beakers A, D and E together - the effects are shown in Figure 2. 

Expt 3: A beaver drinks from beakers C, D and F together - the effects are shown in Figure 3. 

Question: 
Which beaker contains pure water? 

 
C 
B 
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Answer: 

Explanation: 

It’s Computational Thinking: 

Solution 1: 
By Experiment 1, none of A, B and C is pure water, since there are three changes that happen to 
the beaver. 
By Experiment 2, either D or E is pure water or the magic potion making his nose white since A 
is not pure water, from Experiment 1. 
By Experiment 3, D and F are pure water or the magic potion making his whiskers curly, since C 
is not pure water, again from Experiment 1. 
Therefore, D is pure water. 
 
Solution 2: 
Experiment 1 has three effects, Experiment 2 and 3 both have two effects. Therefore, there is no 
pure water in Experiment 1 and there is exactly one water beaker in Experiment 2 and 
Experiment 3. The only common beaker between experiments 2 and 3 is beaker D. Thus, D is 
pure water. 

CT Skills - Algorithmic Thinking (AL), Evaluation (EV) 
CS Domain - Algorithms and programming 

In this problem we have a collection of facts that we need to find new information from. This can 
be done using logical reasoning. Logic plays an important role in Computer Science. The smallest 
unit a computer works with is a bit, which has a value of 1 (true) or 0 (false).  All other 
information in a computer is stored using a specific combination of bits.  The computer uses 
logic to figure out what decisions it should follow, and each of these decisions is based on 
whether certain bits are set to true (1) or false (0). 

This problem also explores basic set theory.  We are looking for an element in the set which is 
not in the set used in Experiment 1, which means it is the complement of A, B, C.  We then look at 
the intersection of Experiments 2 and 3 in order to determine the common element in both. 

Beaker D 
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Hurlers Shake Hands Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

A 

Beavers enjoy playing hurling. 

After the game ends, the beavers in each of the two teams line up in a row and walk past the 
other team. As they pass each other, they shake hands. At the beginning, only the first player on 
each team shakes hands. Next, the first two players shake hands (see picture below). This 
continues until each player has shaken hands with every player on the other team. 

There are 15 players on each team. 

Question: 
If each player takes one second to shake hands and move to the next player, how many seconds 
of shaking hands will there be? 

 
C 
B 
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Answer: 

Explanation: 

It’s Computational Thinking: 

The amount of handshaking is exactly the length of one line plus the length of the other line, 
minus one. 

Let us imagine that there is only 1 player on each team. After 1 second, all handshaking has 
finished. Let us imagine that there are only 2 players on each team. During the first second, the 
first player on each team shakes hands. During the second second, the first player on each team 
is shaking hands with the second player on the other team, and during the third second, the 
second two players are shaking hands with each other. So, that’s three seconds. 

With 15 players in each team, the number of seconds required is 15 + 15 – 1 = 29. 

CT Skills - Algorithmic Thinking (AL) 
CS Domain - Computer processes and hardware 
Tags - Parallel processing 

This task can be viewed as an illustration of a parallel processing paradigm called pipeline 
processing. Pipeline processing is a very efficient way to get many computers working together 
to solve problems quickly, but it can take a relatively long time to reach that efficiency, just like 
our players at the back of each line had to wait quite a while before their first handshake. 

Analysing the running time of an algorithm is a sophisticated part of computer science called 
computational complexity analysis. In this Task, we know the team size is fixed at 15, and can 
deduce that the “running time” of the hand shaking algorithm is 29 seconds. However, in 
computational complexity we would be asked to measure the running time independent of a 
specific team size. We would conclude that the hand shaking algorithm takes 2N-1 seconds, for 
any team size N, where N is 1, or any larger natural number. 

29 
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Primary Health Care Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

A 

Doctor Hamid wants to build three hospitals for the beavers. 
The hospitals can only be built on the places shown on the map below. 
To get to a hospital, the beavers should not have to swim through more than one stream from 
any of these places. 

Question: 
Choose three places to build the hospitals for 
Doctor Hamid. 

 
C 
B 
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Answer: 

Explanation: 

It’s Computational Thinking: 

There are several correct solutions, one for instance uses the places E, H and K: 

• For the places D, E and I the beavers can swim to E. 
• For the places B, C, F, G and H the beavers can swim to H. 
• For the places A, C, G and K the beavers can swim to K. 
The other solutions are: A E H,  C G I,  C H I,  C I K, C E H  and  D F K. 

CT Skills - Abstraction (AB), Evaluation (EV) 
CS Domain - Data, data structures and representations 

In Computing this channel system is generalized to the concept of a graph consisting of vertices 
(intersections) and edges (water canals). The more general problem is to find a so-called “vertex 
cover” in a graph. This is a subset of the vertices that cover the whole graph. Whenever all the 
neighbor vertices to this subset are added together, they will cover all vertices of the graph. 
Usually a minimal number of such vertices is the most cost efficient. In more complex graphs it is 
very hard to find these cost effective subsets of the vertices. It needs a computer algorithm to 
find a solution. 
The method of placing the stations described in the explanation section is called backtracking. 
You try one solution and if it is not correct you take back the last step you’ve made and try 
another step, ideally systematically until you have exhausted all possible last steps. Then you 
take back the pre-last step, try all solutions and so on until you have found a correct solution. 
This method is not very efficient, but for this kind of problems it works reliably. 

The solutions can be found by placing a station at a random position and marking all stations 
that are reachable within one step. Then you can position the next station and so on. Once all 
three stations are placed there are two possibilities: either it’s a solution or there are one or 
more places that are not marked. If it’s not a solution, you can remove the last station you’ve 
placed and place it in another place and check again. If you are still not lucky to find a solution 
with 3 stations you have to “backtrack” and place the last station on another place. By doing this 
systematically one can find all possible solutions. 
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Paint it Black Castors: 
Benjamins: 
Cadets: 

Juniors: 
Seniors: 
 

Combining Card A and Card B, you get Card C: 

 

 

 

 

Card A                      Card B                                  Card C 

Question: 
How many black cells will Card F have after combining Card D and Card E? 

 
C 

Answer: 

Explanation: 

It’s Computational Thinking: 

Combining the cards obeys the following rule. When the color of the corresponding cells is the 
same the resulting color is black. Otherwise the resulting color is white. 

CT Skills - Abstraction (AB), Algorithmic Thinking (AL), Evaluation (EV) 
CS Domain - Algorithms and programming 
Tags - Boolean algebra 

A Boolean circuit is an example of a mathematical computation model. An equivalence  is one of 
the basic Boolean operations.  If the white cell is interpreted as 0 or FALSE and the black cell as 
1 or TRUE, this operation could be described this way: 

1 ⇔ 1 → 1 

0 ⇔ 1 → 0 

1 ⇔ 0 → 0 

0 ⇔ 0 → 1 

3 
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APPENDIX E 

PROGRAMMING CONCEPTUAL KNOWLEDGE POST-TEST 

 

 

Which of the Scratch programs below will get the Scratch Cat to the donut? (circle your answer)

a) b) c)

d) e) f)  I don't know.

Please complete the following items. If you have questions please raise your hand.

Name: ______________________________________

Question 1
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Question 2

Look at the script below:

Which number could you enter to make the teacher say "Great!"? (Circle your answer)

a)  -5 b)  20 c)  19

d)  21 e)  0 f)  I don't know
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Question 3

When the green flag is clicked the blades on this windmill turn clockwise. Which of the below sequences 
would make the windmill rotate the longest? (Circle your answer)

a) b) c)

d) e)
f)  I don't know.
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Question 4

Which of the following would you need to do to move the parrot to the right? (Circle your answer)

a)  Do nothing b)   Click the parrot c)  Press the space bar

d)  Make some noise e) Press the "g" key f)  I don't know.
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Question 5

In the program below, the dinosaur should say the 8 times table, however there's a problem with the code 
and the dinosaur repeatedly says "8".

Which script contains the correct code to make the dinosaur say the complete 8 times table? (Circle your 
answer)

a) b) c)

d) e) f)  I don't know.



www.manaraa.com

 

 169 

 

 

 

 

Question 6

In this Scratch program, the polar bear says to Khalid, "Let me see you dance!" using the Bear Script code 
below. Khalid's dance is controlled by the Dance Script code below.

Bear Script

Khalid's Dance Script

a) b) c)

d) e) f)  I don't know.

Which script contains the correct code to make Khalid both dance and say, "You can't dance like me!" forever? 
(Circle your answer)
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Question 7

This moon duck is going to play a Moon Song on the trumpet. His song is exactly 2 minutes and 15 seconds 
(135 seconds) long. The "Seconds" timer in the upper right corner of the backdrop should count the seconds so 
that other moon ducks can appear on the screen at a specific time in the song, however, something isn't quite 
working right. As soon as the green flag is clicked, the seconds timer goes from 0 to 135 instead of counting up 
by 1 every second.

Which is the correct sequence of code to play the Moon Song and make the Seconds timer change by one every 
second in the song? (Circle your answer)

a) b) c)

d) e) f)  I don't know.



www.manaraa.com

 

 171 

APPENDIX F 

CORRELATIONS BY OVERALL SAMPLE 
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APPENDIX G 

CORRELATIONS BY CONTROL GROUP 
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APPENDIX H 

CORRELATIONS BY EXPERIMENTAL GROUP 
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