
www.manaraa.com

CODING IN THE CURRICULUM: LEARNING COMPUTATIONAL
PRACTICES AND CONCEPTS, CREATIVE PROBLEM

SOLVING SKILLS, AND ACADEMIC CONTENT IN
TEN TO FOURTEEN-YEAR-OLD CHILDREN

A Dissertation
Submitted to

the Temple University Graduate Board

In Partial Fulfillment
of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

by
Kevin S. Donley

Diploma Date August 2018

Examining Committee Members:

Frank Farley, Advisory Chair, Psychological Studies in Education
Joseph DuCette, Office of the Dean, Psychological Studies in Education
Yasmin Kafai, Graduate School of Education, University of Pennsylvania
John Hall, External Member, Policy, Organizational, & Leadership Studies

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10842428

10842428

2018

www.manaraa.com

 ii

©
Copyright

2018

by

Kevin Donley

All Rights Reserved

www.manaraa.com

 iii

ABSTRACT

The fundamentals of computer science are increasingly important to consider as

critical educational and occupational competencies, as evidenced by the rapid growth of

computing capabilities and the proliferation of the Internet in the 21st century, combined

with reimagined national education standards. Despite this technological and social

transformation, the general education environment has yet to embrace widespread

incorporation of computational concepts within traditional curricular content and

instruction. Researchers have posited that exercises in computational thinking can result

in gains in other academic areas (Baytak & Land, 2011; Olive, 1991), but their studies

aimed at identifying any measurable educational benefits of teaching computational

concepts to school age children have often lacked both sufficient experimental control

and inclusion of psychometrically sound measures of cognitive abilities and academic

achievement (Calao, Moreno-León, Correa, & Robles, 2015). The current study

attempted to shed new light on the question of whether using a graphically-based

computer coding environment and semi-structured curriculum –the Creative Computing

Course in the Scratch programming language –can lead to demonstrable and significant

changes in problem solving, creative thinking, and knowledge of computer programming

concepts.

The study introduced 24 youth in a summer educational program in Philadelphia,

PA to the Scratch programming environment through structured lessons and open-ended

projects for approximately 25 hours over the course of two weeks. A delayed treatment,

control trial design was utilized to measure problem solving ability with a modified

version of the Woodcock-Johnson Tests of Cognitive Abilities, Fourth Edition (WJ-IV),

www.manaraa.com

 iv

Concept Formation subtest, and the Kaufman Tests of Educational Achievement, Third

Edition (KTEA-3) Math Concepts and Applications subtest. Creative problem solving

was measured using a consensual assessment technique (Amabile, 1982). A pre-test and

post-test of programming conceptual knowledge was used to understand how

participants’ computational thinking skills influenced their learning. In addition, two

questionnaires measuring computer use and the Type-T (Thrill) personality characteristic

were given to participants to examine the relationship between risk-taking or differences

in children’s usage of computing devices and their problem solving ability and creative

thinking skills.

There were no differences found among experimental and control groups on

problem solving or creative thinking, although a substantial number of factors limited and

qualified interpretation of the results. There was also no relationship between

performance on a pre-test of computational thinking, and a post-test measuring specific

computational thinking skills and curricular content. There were, however, significant,

moderate to strong correlations among academic achievement as measured by state

standardized test scores, the KTEA-3 Math Concepts and Applications subtest, and both

the pre and post Creative Problem Solving test developed for the study. Also, higher

levels of the Type T, or thrill-seeking, personality characteristic were associated with

lower behavioral reinforcement token computer “chips," but there were no significant

relationships among computer use and performance on assessments.

The results of the current study supported retention of the null hypothesis, but

were limited by small sample size, environmental and motivational issues, and problems

with the instrumentation of the curriculum and selected measures. The results should,

www.manaraa.com

 v

therefore, not be taken as conclusive evidence to support the notion that computer

programming activities have no impact in other areas of cognitive functioning,

mathematic conceptual knowledge, or creative thinking. Instead, the results may help

future researchers to further refine their techniques to both deliver effective instruction in

the Scratch programming environment, and also target assessments to more accurately

measure learning.

www.manaraa.com

 vi

This work could not have been done without the

instrumental and unconditional support from my mother,

Deb Donley, who has not only supported me throughout the

long and often stressful journey through graduate school,

but also has remained an ever-positive, guiding force

throughout my life. Thank you does not even begin to

touch upon the level of gratitude I owe to you.

www.manaraa.com

 vii

ACKNOWLEDGMENTS

This work was an enormous undertaking that often involved collaboration with a

variety of researchers and educators at various stages along the way. Without the support

and guidance of those listed below, this work could not have been possible. Thank you to

Christopher Hanlon, Shanisha Mitchell, and Avery Thornburg of Belmont Charter

Network for hosting the study and providing logistical support; Eljakim Schrijvers and

Daphne Blokhuis for helping coordinate the Bebras Challenge Computational Thinking

Assessment; the PhilaSoup organization for providing funds to purchase individual

Creative Computing Curriculum workbooks for students; Kelsey Huse for going above

and beyond as lead course instructor; the teams of research assistants who acted as field

assessors and raters of student responses; Catherine (Cathy) Fiorello for help with

modifying the WJ-IV CF; James Kaufman for providing direction on the assessment of

creativity; Wilhelmina (Willa) Peragine for consulting on the implementation of Creative

Computing Course; Jill Denner, Shannon Campe, and Deborah (Debby) Fields for

steering me in the right direction in searching the literature; the Computer Recycling

Center at Temple University for letting me repurpose their computer chips; and my

advisory and examining committee members for providing guidance, feedback, and

support throughout the study. Last but not least, I thank my wife, Caitlin Martin, from the

bottom of my heart for always being there to troubleshoot a problem, listen to me vent,

and cheer me on through the countless nights spent sequestered in front of the computer.

www.manaraa.com

 viii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ... vi

ACKNOWLEDGMENTS .. vii

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

CHAPTER

1. INTRODUCTION ...1

2. REVIEW OF THE LITERATURE ...5

Historical Developments in Educational Technology ...13

Computational Thinking as a 21st Century Literacy ..23

How Can Educators Best Support the Development of CT Skills?26

Games and Game-based Learning ...29

Peer Critique and Collaboration ...31

What Can Students Learn While Participating in Programming
Activities? ..33

Programming Conceptual Knowledge ...33

Problem Solving Skills ..37

Metacognitive Skills ..39

Academic Skills and Content ...40

Creative Thinking Skills ..44

Assessing Learning in Computational Thinking ..47

State of the Field ..53

www.manaraa.com

 ix

3. METHODS ..55

Participants ...55

Design ..59

Measures ..62

Materials ..71

Data Collection ..75

Relationship Among Variables ..84

4. RESULTS ..90

RQ1: Problem Solving and Creative Thinking ..90

RQ2: Computational Thinking Skills ..92

5. DISCUSSION ..97

Notable Findings ..97

No Group Differences Across Assessment Variables97

Difficulty of Teaching the Creative Computing Curriculum
in an Informal Learning Environment ...100

Difficulty Assessing Computational Thinking ..104

Limitations ...107

Conclusion ...112

REFERENCES CITED ..115

APPENDICES

A. CREATIVE PROBLEM SOLVING PRE-TEST ..135

B. CREATIVE PROBLEMS SOLVING POST-TEST ..139

C. TYPE T PERSONALITY QUESTIONNAIRE ...143

www.manaraa.com

 x

D. USA BEBRAS 2016 QUESTIONS AND ANSWERS ...144

E. PROGRAMMING CONCEPTUAL KNOWLEDGE POST-TEST164

F. CORRELATIONS BY OVERALL SAMPLE ...171

G. CORRELATIONS BY CONTROL GROUP ..172

H. CORRELATIONS BY EXPERIMENTAL GROUP ..173

www.manaraa.com

 xi

LIST OF TABLES

Table Page

3.1. 2016 USA Bebras Challenge (PCK1) Assessment Composition68

3.2. Programming Conceptual Knowledge Post-test (PCK2) Composition70

3.3. Day-by-day Lessons for Experimental and Control Groups73

3.4. Creative Problem Solving Pre-test (CPS1) Interrater Reliability Statistics78

3.5. Creative Problem Solving Post-test (CPS2) Interrater Reliability Statistics78

3.6. Perceived Misinterpretations Across Items on CPS1 and CPS279

3.7. Youth Computer Activities at Home ..81

3.8. Youth Computer Activities at School ...82

3.9. Descriptive Statistics Across Assessments by Group ...84

3.10. Correlations among PSSA, KTEA-3 MCA, and CPS scores87

4.1. Mann-Whitney U Test Statistics Across Assessments and Group91

4.8. Mann-Whitney U Test Statistics for Change in Assessment Scores91

www.manaraa.com

 xii

LIST OF FIGURES

Figure Page

3.1. Experimental Design and Measures ..62

4.1. Mean ratings on the CPS assessments ..92

4.2. Ranked Order of PCK1 Scores by PCK2 Scores Across Students93

4.3. Number of Correct Responses Across PCK1 Items ..94

4.4. Number of Correct Responses Across PCK2 Items ..94

www.manaraa.com

 1

CHAPTER 1

INTRODUCTION

The digital age requires competence in a variety of skills in order to be successful,

some directly related to academics and others indirectly related to academics through

creative thinking and problem solving. One of the most highly valued skills in the age of

information is the ability to quickly and efficiently solve problems (Federation of

American Scientists, 2006); therefore, students entering the workforce should be prepared

to meet this need. Providing the appropriate educational supports for the development of

problem solving abilities is not only important for an individual’s success in many

aspects of life, but also for the collective future of the nation and world at large (National

Research Council, 2010). The field of computer science may be one avenue in which

students can learn problem solving skills as it is inherently intertwined with solving

complex problems using language and logic (diSessa, 2000). Computer programming

even in the most rudimentary sense has the potential to be an influential, creative, and

engaging process that can lead to deeper understanding of the physical world (Papert,

1980). Furthermore, computer-programming activities involve an iterative problem

solving approach that mimics the scientific method itself (Tracz, 1979).

According to the US Department of Labor and Statistics (2013) computer systems

design and related service occupations are predicted to add over 600,000 jobs by 2022,

which represents six percent of expected job growth across industries. Additionally,

occupations in which an understanding of central principles of computer science is listed

as a requisite skill are evident across industries, with 67% of these jobs positioned outside

of the tech sector (Carnevale, Smith, & Melton, 2011). Clearly, there is demand to

www.manaraa.com

 2

educate individuals in the fundamentals of computer science not only to meet the needs

of the occupational landscape of the modern era, but also to foster the development of

critical problem solving skills that can be applied to a variety of situations.

Although there is a need to train technically skilled individuals to solve problems

with computers, and a potential benefit by increasing problem solving abilities, general

education in the United States does not put the same kind of emphasis on computer

science as it does for traditional academic subjects (National Science Foundation, 2009).

Of the nearly 42,000 high schools in the United States, just over 3,200 offered AP

courses in Computer Science in the 2015-2016 school year (College Board, 2015). A

recent large-scale, multiyear research effort conducted by Gallup including students

ranging from 7th to 12th grade, parents, K-12 teachers, and school administrators

(principals and superintendents) found that while both parents and students viewed

computer science as just as important as other classes, e.g., history, math, etc., principals

and superintendents did not perceive a high demand from students or parents for

computer science courses in their districts; moreover, less than one third of teachers,

principals, and superintendents surveyed reported that computer science education is

currently a top priority for their school or district (Gallup, 2014).

Some claim that students’ problem solving abilities can directly benefit from

teaching computer science in an engaging way (Ackaoglu, 2014; Ackaoglu & Koehler,

2014; Au & Leung, 1991; CSTA, 2011; De Corte, 1992; diSessa, 2001; Hwang, Hung, &

Chen, 2013; Ioannidou, Repenning, & Webb, 2009; Khasawneh, 2009; Li, 2010). Others

contend that there are also indirect benefits to more traditional academic subjects through

more highly developed metacognitive abilities (Allsop, 2015; Clements & Nastasi, 1999;

www.manaraa.com

 3

Li, 2010), and creative thinking skills (Clements, 1986; Kim, Chung, &Yu, 2013).

Recognition that understanding fundamental principles of computer science is of great

importance in education has come to light with the National Research Council’s (NRC)

publication of A Framework for K-12 Science Education; specifically, the NRC’s

decision to list computational problem solving as one of the eight essential practices for

the scientific and engineering dimension (NRC, 2012). In response, non-profit

organizations and professional associations have recently collaborated to align courses in

computer science fundamentals to national education standards in hopes of more

regularly folding in computer science instruction into the daily school schedule

(“Code.org,” 2018). It is, therefore, important to carefully consider and examine how

engaging in computational problem solving affects both academic and cognitive

outcomes.

Computer Science (CS) is an academic subject that is often viewed as

intimidating and difficult to learn for many students. Using programming environments

that reduce the cognitive load inherent in traditional programming languages due to

complex and unfamiliar programming syntax is crucial for young children to access and

develop computational thought processes (Kelleher & Pausch, 2003). Kafai and Burke

(2013) note that the past decade has seen a rise in the number of introductory

programming languages that make coding a more intuitive and personal process. The

opportunities to cultivate the educational potential of learning to program are many, and

the consequences are profound; however, many questions still remain in light of the

existing literature on how computer-programming activities can affect educational

outcomes.

www.manaraa.com

 4

The current study is one of the first in the field of educational research in

computational thinking to utilize a control trial design to experimentally examine the

relationship between participation in computer programming activities, problem solving,

and academic achievement (particularly in the domain of mathematical problem solving)

using standardized measures commonly found in the world of cognitive and academic

assessment. The primary research questions being evaluated in this study are as follows:

1) Do youth who participate in programming activities demonstrate measurable changes

in problem solving ability and creative thinking? And, 2) did they learn and apply

computational thinking skills after participating in an introductory computer coding

curriculum using a novice-oriented, graphically-based programming environment?

An intuitive link between mathematical problem solving ability and computer

programming exists because programming utilizes principles of logic much like the use

of inductive and deductive logic plays a primary role in mathematical problem solving,

and it was hypothesized that children who engage in computer-programming activities

will show significantly higher levels of mathematical problem solving ability and fluid

reasoning ability as compared to those who do not engage in enriched computer-

programming activities. Additionally, children who receive instruction in computer

programming through a guided curriculum were hypothesized to demonstrate gains in

programming conceptual knowledge and be able to apply this knowledge in a post-test of

programming conceptual knowledge. Lastly, due to the open-ended, and limitless nature

of lessons within the selected curriculum, measures of creativity are hypothesized to

increase after completing the programming course.

www.manaraa.com

 5

CHAPTER 2

REVIEW OF THE LITERATURE

The increasingly complex and interconnected world of the 21st century is a

double-edged sword that offers both incredible possibilities, and grave uncertainties. The

exponential growth of computer processing capabilities in the twentieth century,

combined with ever cheaper, more efficient data storage technologies (among many other

advances in science and engineering) has impacted nearly every aspect of daily living,

reaching even the most remote corners of the earth. From the smart phones that allow us

to video chat with loved ones across the planet, to the vast electrical grid that connects

power plants around the globe, there is a network of integrated systems and technologies

continuously communicating, responding, and changing according to a complex set of

logical rules and binary signals.

The sacrifices needed to develop such technologies have consumed time, energy,

and natural resources on a scale never before witnessed by the human species. The

scientific community unequivocally agrees that humankind has altered global

environmental systems, and that the biodiversity of ecosystems both on a small and large

scale is being threatened (Intergovernmental Panel on Climate Change, 2013). What

society needs are creative minds that have the skillset and confidence to take on both the

large and small-scale problems using the tools, strategies, and knowledge at their

disposal. Of increasing relevance and importance is the ability to solve real world

problems through the design and implementation of digital systems using principles of

computer science (CS), a concept that has been termed computational thinking (CT).

Articulating the difference between education technology, i.e., using computer

www.manaraa.com

 6

technology to learn about other subjects; information technology, i.e., the proper use of

technologies by which people manipulate and share information; and computer science,

i.e., the study of computers and algorithmic processes, including their principles, their

hardware and software designs, their applications, and their impact on society has been

the focus of organizational initiatives to develop educational standards (Computer

Science Teachers Association, 2011, 2017).

A comprehensive understanding of the intricacies and technical details of how the

staggering number of digital systems and laws of nature interact and operate within the

world is undoubtedly beyond the mental capacity for any single person; however,

understanding the basic rules and languages that govern these systems is an achievable

task that can be fostered through explicit instruction and collaborative experimentation.

The short-term benefits of knowing how to use the language of computers to abstract and

manipulate data could result in an employment opportunity among a variety of traditional

industries and newly emerging fields. In addition, the movement toward a more digitally

fluent global culture achieved through increased knowledge and participation in

computational creation has the potential to solve some of humankind’s most pressing

issues.

Primary and secondary education is tasked with providing young citizens with the

knowledge and opportunities to be informed and productive members of society who are

capable of adapting to and influencing their natural and social environment. A crucial

ingredient to the recipe for citizenship is the ability to critically understand and analyze

information with objectivity, which is analogous to the understanding of science and the

scientific method. A fundamental understanding of biological systems and physical laws

www.manaraa.com

 7

as well as the way humans interact both on a social and technological level to affect

natural systems is an essential responsibility of all who aspire to positively influence the

world around them. Moreover, providing students not only with knowledge, but more

importantly, with the skills to think critically should be the ultimate goal of education,

and is the very foundation of democracy (Bruner, 1960).

Modern civilization is the culmination of technological innovation and human

ingenuity driven by environmental and economic forces, fueled by scientific discovery.

Manipulating the environment to achieve desired ends and streamlining the process of

realizing those ends is a hallmark of global economic and societal progress, and more

broadly, humankind’s adaptability and success as a species. The anthology of critical

inventions and discoveries prior to and during the modern era is beyond the scope of the

current review; however, within the last decade the pace of scientific discovery and

technological innovation has been particularly accelerated as wireless communication

and integrated computer networks have allowed individuals, businesses, and nations to

more rapidly exchange information, services, and products.

The societal and economic dynamics of the information age are discussed at

length in Castells’ (1996) The Rise of the Network Society. The three-volume work

thoroughly explores and describes the ways in which the instantaneous flow of

information, currency, and cultural capital affect the lives of those living within its

physical and virtual boundaries. Castells discusses the historical context of technological

innovation and its relationship to the progression of civilization across time and space,

while also laying the theoretical groundwork for how the new economy of information

technology would evolve over time. Among many other things, he focuses specifically on

www.manaraa.com

 8

the importance of an educated portion of the population in contributing to societal and

economic progression by affecting technological change as it relates mass media culture.

The economy of the information age has been in large part driven by the

proliferation of ever-increasing means to quantify individual and group behavior through

digital information. In a white paper prepared for the Computing Community Consortium

committee of the Computing Research Association, Bryant, Katz, and Lazowksa (2008)

describe the explosion of data within the previous decade as a result of technological

developments in sensors, computer networks, data storage, cluster computer systems,

cloud computing facilities, and data analysis algorithms. Bryant et al. (2008) call for

increased investment in networking infrastructure, education, and research to address the

existing limitations on utilizing this “big data” to its full potential.

As the sheer amount of data produced by an individual, or organization

exponentially increases over time, the skills to analyze, transform, and interpret the data

generated from the growing amount of digital activities inherent in daily life are

becoming increasingly valuable (Lohr, 2012). The implications of this relatively rapid

and dramatic shift in the amount of information available to governments, corporations,

and individuals are such that a mere understanding of how to functionally navigate the

digital world to obtain goods, services, and entertainment is now nearly an instinctive

activity. Although being a user of digital devices makes up a large portion of individuals’

interactions with computing devices, a movement beyond the mentality of simply being a

user of digital technology in favor of being a participatory contributor is now more than

ever being recognized as an important part of modern life, and an equally important

educational opportunity (Kafai & Burke, 2013).

www.manaraa.com

 9

Despite the apparent importance of understanding fundamentals of computer

science, and scientific knowledge in general, the state of science education in the United

States continues to be the focus of criticism, even after over 30 years since the

publication of the seminal report, “A Nation at Risk: The Imperative for Educational

Reform” (US Department of Education, 1983). The perpetually bleak portrayal of K-12

science education in the US continues in part because of a relatively mediocre

international ranking on the Program for International Student Assessment (PISA), in

addition to unexceptional results from the science portions of the US National

Assessment of Educational Progress (NAEP), which indicated that just 21 percent of high

school seniors in the US were proficient in science knowledge (Fleischman, Hopstock,

Pelczar, & Shelley, 2010). National initiatives specifically to support teachers and

schools in the delivery of high quality Science, Technology, Engineering, and Math

(STEM) education for their students have been initiated and continue to undergo

refinement. In 2005, for example, the National Science Foundation (NSF) developed a

new vision for science and engineering research and science education for 2020 (NSF,

2005). In 2010, the Computer Science Education Act, which aimed to provide grants to

state educational agencies to strengthen CS education at the elementary and secondary

level, was introduced in the United States House of Representatives in 2010 (H.R. 5929,

2010). In 2014, the STEM Education Act was introduced and passed in the house (H.R.

5031, 2014). This bill provided funding through the National Science Foundation (NSF)

to research and development for STEM out-of-school learning and STEM learning

environments, and research that advances the field of informal STEM.

www.manaraa.com

 10

Relatedly, in 2012, the National Research Council developed a comprehensive

framework for K-12 science education in the United States, commonly referred to as the

Next Generation Science Standards (NGSS), which focuses on the integration of core

science concepts and practices into dynamic learning experiences across grade levels

(National Research Council, 2012). Around the same time, the Association for

Computing and Machinery (ACM), the Computer Science Teachers Association (CSTA),

the International Society for Technology in Education (ISTE), and the National Science

and Math Initiative (NSMI) along with advisors in the computing community (higher

education faculty, researchers, and K-12 teachers) convened a task force to rethink how

computer science education can be incorporated into K-12 classrooms. Based on

computer science standards previously developed in 2003 and then revised by a CSTA

task force (CSTA, 2011), these updated standards packaged computer science as a

method of learning more traditional academic subjects while promoting 21st century

competencies. The developers of these standards argue that computer science, as opposed

to computer literacy, should be considered a core component of the general education

curriculum because it bolsters critical thinking and problem solving skills. The CSTA

task force released a newly revised version of the CS Standards at the 2017 CSTA

Annual Conference, redeveloping computer science learning standards to specifically

align not only with the NGSS framework, but also with Common Core State Standards,

and the Partnership for 21st Century Skills: Essential Skills for Success guidelines

(CSTA, 2017). The goal of both the NGSS and CS standards is to provide a framework

for state and local education agencies to develop their own standards, and attempt to

provide example activities and lessons designed to tap into various areas. It was based in

www.manaraa.com

 11

the assumption that educators must be skilled and competent enough to effectively

incorporate learning activities designed to promote computational thinking skills at a

more general curriculum level.

The term computational thinking (CT), popularized by Jeanette Wing in 2006, in

its simplest form refers to the ability to understand how computers can be used to create

things or solve problems. It involves abstracting data, thinking algorithmically,

evaluation and generalization, modeling, and specific processes and perspectives. These

skills are high-level cognitive processes that are often difficult for some teachers to

understand (Grover & Pea, 2013). This is one reason why teachers have difficulty

incorporating activities designed to promote CT skills into their instruction. In general,

however, many researchers in the field of computer science in education feel that even

very young children have the abilities to grasp CT concepts, and therefore, should be

exposed to CT lessons and activities early in their education. This term has become

subject to continuous practical redefinition and conceptual refinement since its

introduction, and is discussed in more detail in a separate section below.

The educational setting has the potential to serve as an ideal medium for which to

incorporate the NGSS and CS standards because of the growing importance in society

and broad utility for skilled individuals with well-developed CS competencies across

disciplines and industries; however, K-12 education has failed to tap into this potential. A

2010 report commissioned by the ACM and the CSTA found that despite emphasis of

national, state, and local policy makers on the expansion of high quality STEM primary

and secondary education, the number of schools offering introductory courses in

computer science declined by 17 percent between 2005 and 2009, and schools offering

www.manaraa.com

 12

advanced courses in computer science declined by 35 percent in the same time period

(Wilson, Sudol, Stephenson, & Stehlik, 2010). In a similar vein, a review of the existing

literature surrounding the teaching of computer coding at the elementary level indicates

that although there is a call to incorporate coding in the US elementary curriculum, few

schools are actually implementing such activities (Pinkston, 2015).

A renewed public interest in computer coding fueled by increased recognition of

the practical importance of computational thinking skills in the workforce, and the global

propagation of education-based organizations whose mission is to develop innovative

problem-solvers and promote CS for all, is opening the door for computer science to be

woven into aspects of K-12 education beyond its current focus on education technology.

Recently, The White House has called for a “Computer Science for All” initiative that

plans on dramatically increasing funding for states to expand K-12 computer science

education by training teachers, expanding access to high-quality instructional materials,

and building effective regional partnerships (The White House, 2016). Most recently,

development of a revamped high-school level AP Computer Science Principles course

was completed with a focus on lessons and projects designed to explore computational

concepts, processes, and practices, while also more clearly laying out learning objectives

and assessment methods (The College Board, 2017). The exciting future of computer

science education, however, should not overlook its past, and in the following section,

some of the milestones and relevant research related to computers in education are

presented and discussed.

www.manaraa.com

 13

Historical Developments in Educational Technology

The history of computing technology and computer science in education would

not be complete without mention of the work of Seymour Papert, who most notably

authored Mindstorms: Children, Computers, and Powerful Ideas (1980). In this book he

argued that children have the capability of understanding how to use computers on a

complex level, and that learning to use computers in this way can change how they think

about the world. He rooted this idea in constructivist learning theory, which in its

simplest form suggests that individuals construct meaning and build knowledge in

relation to their experiences and ideas. This epistemological philosophy is evident in the

writings and theories presented by such influential psychologists as Jean Piaget, who

focused on how individuals construct knowledge and meaning from a developmental

perspective (Piaget, 1962); and Lev Vygotsky, who incorporated socio-cultural and

historical contexts to explain how individuals construct knowledge of the world to

develop higher-level cognitive processes such as problem solving ability (Vygotsky,

1978). Papert, however, elaborated on the constructivist perspective on learning,

suggesting that the context in which individuals most effectively build knowledge

structures occurs when they are actively engaged in constructing a public entity that is

meant to be shared with others. The term he used to describe this assertion was

constructionism (Papert, 1991).

The seeds of constructionism had been planted in Papert’s mind long before the

term was coined with the development of the Logo programming language in 1968 at the

Massachusetts Institute of Technology (MIT) based technology company, Bolt, Beranek,

and Newman (BBN) by Seymour Papert, Wallace Feurzeig, and Daniel Bobrow. The

www.manaraa.com

 14

Logo programming language was designed as a tool for learning through simulations,

multimedia presentations, and games in mathematics, language, music, robotics,

telecommunications, and science (“Logo History”, 2015). The Logo programming

environment utilizes a turtle, or “sprite,” that can be programmed to move in a virtual

space to create and manipulate graphics, geometrical shapes, and designs. As users

become more proficient in Logo, they are able to execute more complex series of

commands while receiving immediate visual feedback on their programs. Papert (1980)

claimed that children learn to use the Logo turtle as an “object-to-think-with” (p. 11)

allowing them to link their internal representations of the virtual world of the Logo turtle

with the physical world in which they inhabit. He claimed that all learners regardless of

age or ability could learn to use computers to construct knowledge about the world, and

he profoundly influenced a generation of scientists, educators, and students with his

philosophy. The popularity of Logo as a programming language waned in the 1990s, but

was renewed as variations of the language that allowed for more functionality,

interactivity, and capability were developed under direction of Mitchell Resnick at MIT

and through collaboration with Uri Wilensky of Northwestern University, e.g., StarLogo,

NetLogo, LEGO Logo (Hayes & Games, 2008; “Logo History,” 2015).

As personal computers became more widespread in the subsequent decades

following the development of Logo, and in tandem with the popularity of Mindstorms,

educators and computer science researchers became interested in how Logo could be

used to not only introduce students to the burgeoning world of computer science, but also

how it could be used to enhance specific academic skills. A library database search of

scholarly and peer-reviewed journal entries with the term “Logo” in the title and the

www.manaraa.com

 15

terms “learning” and “programming” in the abstract yielded 37 articles from 1980 to

2016 peaking in 1986. A more thorough search including search terms describing other

programming languages of the era like BASIC and Pascal, which were programming

languages developed with a similar goal, i.e., to introduce computer programming to

children, yielded a larger return of articles; however, the wave-like trend beginning in the

mid to late 1980s and lasting until the early 1990s for the emergence of studies involving

these programming languages remained the same. Many of the articles returned in the

original search investigated the relationship of programming with Logo to mathematical

understanding of geometric or algebraic concepts (Clements & Sarama, 1995; Feurzeig,

1986; Noss, 1986; Olive, 1991; Valente, 2003) or more general problem solving abilities

(Au & Leung, 1991; Battista & Clements, 1986; DeCorte, 1992; Howard, Watson, &

Allen, 1993; Khasawneh, 2009; Pardamean & Evelyn, 2014; Poulin-Dubois, McGilly, &

Shultz, 1989; Suomala, 1996). Another subset of research with Logo programming

investigated how children learn while using Logo through various cognitive perspectives

(Geva & Cohen, 1987; Gibbons, 1995; Mayer & Fay, 1987; Olive, 1991; Wilson,

Mundy-Castle, & Sibanda, 1991; Yelland, 1995) or instructional methodologies

(Emihovich & Miller, 1988; Fay & Mayer, 1994; Hoyles, Sutherland, & Evans, 1986;

Lin, Li, Ho, & Li, 2007; Littlefield, Delcios, Victor, Bransford, Clayton, & Franks, 1989;

Sutherland, 1993). Finally, one study evaluated how learning to program in Logo affected

a measure of creativity (Clements, 1986).

Of the studies identified in the limited literature search mentioned above, many

report learning gains across measures when students engaged in programming with Logo

(Au & Leung, 1991; DeCorte, 1992; Emihovich & Miller, 1988; Mayer & Fay, 1987;

www.manaraa.com

 16

Pardamean & Evelyn, 2014; Suomala, 1996). On the contrary, other researchers found

that without sufficient instructional support, Papert’s ubiquitous belief that any child

could construct meaningful knowledge about the world through exploration and creation

in a virtual world (mainly through Logo) was not supported by improved problem solving

ability or mathematical achievement (Battista & Clements, 1986; Clements, 1986; Cohen,

1987; Littlefield et al. 1989; Palumbo, 1990; Pea & Kurland, 1984; Wilson et al., 1991).

One such study challenging Papert’s claims that all students are capable of

learning how to program with computers involved preschool children who were

instructed on how to use the Logo environment for 45 minutes per week for eight months

(Vaiyda, 1985). Fourteen preschool children ranging from 55 to 65 months in age were

assessed across the following four variables: 1) field dependence-independence (a

measure of cognitive style), 2) creativity, 3) mathematical ability, and 4) computer or

computer-related experiences in the home and outside the home. Children were

categorized into three groups corresponding to their ability to use Logo effectively as

determined through structured observation. None of the measured variables significantly

differed across groups; however, all of the children in the group that demonstrated the

most advanced understanding of Logo had video games in their home and played arcade

games, as opposed to three out of the ten children in the other less advanced Logo

programming groups. This early attempt to teach preschool-age children how to use Logo

provided some support that young children could effectively interact and use functions of

Logo; however, the relatively low dosage of the treatment, i.e., 45 minutes per week,

combined with the extremely small sample size (n = 14) may not have been enough to

produce or detect changes across the measured dimensions.

www.manaraa.com

 17

In another study, Battista and Clements (1986) tested whether groups of fourth

and sixth grade students who participated in either 1) computer-aided instruction (CAI)

using programs designed in a game-like format intended to teach specific skills, e.g.,

Rocky’s Boots from The Learning Company or Thinking With Ink from the Minnesota

Educational Computing Consortium; or 2) used Logo Turtle graphics after whole-class

instruction, performed differently on problem solving and math achievement measured

by responses to researcher-created word problems categorized either as procedural and

conceptual problems, or executive processing levels of problems solving. Students

participated in two 40-minute sessions per week for a total of 42 sessions across the

school year. The researchers found no significant differences between students who used

Logo, CAI, or control groups from pre to post-test measures of procedural and conceptual

aspects of problem solving; however, the Logo group demonstrated significantly greater

gains from pre-test to post-test than either CAI or control groups in metacognitive aspects

of problem solving, i.e., deciding on the nature of the problem, choosing a solution

strategy, selecting a mental representation, and monitoring solution processes. The

authors concluded that there was no evidence that computer-aided activities improved

students’ procedural or conceptual knowledge of math or ability to solve problems, but

may improve executive-level problem solving skills.

In a small scale study, Kurland and Pea (1985) investigated how a group of eleven

and twelve-year-old children (n = 7) verbally explained how recursive Logo programs

functioned after roughly fifty hours of classroom programming time in Logo over two

years. Classroom programming time consisted of exploratory lessons in Logo, and

students were provided direct instruction in iteration and recursion. Recursion is a

www.manaraa.com

 18

cognitively complex concept important in computer science that allows a function to call

itself within the program text, enabling an infinite number of solutions to a given problem

using simplistic commands arranged and defined appropriately. Students were asked to

look at short Logo shape-drawing programs of varying levels of complexity, then to give

a verbal description of how the program would work, and finally, to hand draw how the

program would run. The authors found that children demonstrated significant difficulty

explaining recursive functions, and often misinterpreted the context, assigned intention to

the Logo turtle, used incorrect concepts, e.g., looping, or attributed natural language

meanings to the computer code.

Although the majority of the studies described above occurred in the mid to late

1980s, some researchers have called for reevaluation of this era in the literature due to its

importance for the future of computer coding in education (Grover & Pea, 2013). In

reality, however, the field moved in a different direction partly as a result of conflicting

results from a number of studies investigating the potential educational and cognitive

benefit of programming with Logo, combined with advancements in computer processing

capabilities and software portability, i.e., floppy disks and CD-ROMS. Computer

technology in the educational environment began to gravitate away from the

programming-for-all philosophy championed by Papert through Logo, and toward the use

of educational games as an emerging industry of children’s software began to dominate

the landscape in the mid to late 1990s.

Valente (2003) notes that in the 1980s, computers in schools were very simple

machines that were relegated to one of two roles, i.e., simple drill and practice machines

to teach specific content through tutorials, simulations, or games, or for programming

www.manaraa.com

 19

activities primarily using Logo. Ito (2008) describes the cultural history of educational

software aimed at elementary students, tracing the development of children’s software,

learning games, or “edutainment” as it progressed through the 1980s and 1990s. He

describes the shift from drill-and-practice CAI systems to software that drew from

aspects of the growing video and arcade game industry, e.g., Number Munchers, Math

Blasters, Oregon Tail, Reader Rabbit, KidPix, and Where in the world Is Carmen

Sandiego? He further decomposes educational software into three strands, each

associated with either behaviorist, play-centric, or constructivist educational

philosophies. The academic strand typically embedded academic mini-games within a

larger role-playing or action-based scenario, e.g., Math Blasters, choosing to focus more

on curricular alignment and behaviorist principles of positive reinforcement for task

completion rather than innovative game-play. The entertainment strand primarily focused

on play-centric “click-and-explore” interactive environments, e.g. Myst, with some subtle

academic content embedded within the environment as opposed to overt academic

challenges in order to obtain a reward as part of game play. The constructive strand rested

heavily on Papert’s ideology and provided children with toolkits to create computer-

based programs or simulations, e.g., SimCity. These types of software were intended to

promote technical empowerment, i.e., “the ability to translate authorial agency into a

media form” (Ito, 2008, p. 101). Although many of these gaming titles were marketed to

parents, educators and schools began to buy in to some of the claims that children could

learn important academic knowledge through gameplay. The fact that children were

entertained and motivated by these educational games was a strong selling point for their

www.manaraa.com

 20

adoption as a part of computer education in schools and in homes across the United

States and elsewhere in the world.

The changing technological landscape continued to influence computers in

education through the late 1990s, and an increasing emphasis was placed on computer

literacy. As computers became cheaper, smaller, and loaded with more modern and easy-

to-use operating systems, a large amount of federal funding was set aside to computerize

schools. For example, the 1996 Technology Literacy Challenge Fund allocated two

billion dollars for schools to provide training, resources, and infrastructure to “connect all

classrooms in America to the information superhighway” (Riley, Kunin, Smith, &

Roberts, 1996). The computerization of American classrooms dramatically reduced the

ratio of computing machines to students, opening new doors for how computers could be

used in schools, and tasked both educators and students alike to develop computer

literacy skills, i.e., possess the knowledge and skill to functionally navigate through a

computer interface, use word-processing software, and explore the internet.

Specifically, a virtual hands-on approach to learning and research became

possible through developments in word-processing and presentation software, e.g.,

Microsoft Word and PowerPoint, through the incorporation of smart-board technology as

a learning tool to enhance classroom instruction, and through the availability of various

forms of media with increasingly powerful web browsers. The World Wide Web became

more complex and user-friendly, and collaborative classroom environments that

integrated the use of dynamic classroom blogs and other digital learning communities

with traditional instructional methods emerged as a common practice in secondary and

higher education. This “blended,” or mixed, classroom wherein students submit work,

www.manaraa.com

 21

receive feedback, and critique others’ work continues to alter the manner in which

instruction is delivered and learning is assessed.

The movement toward computer literacy in the 1990s and 2000s, albeit a

necessary progression, overshadowed the fundamental tenets of computer science that

had been so much a part of the early endeavors in computer programming in education

during the 1980s with Logo and other early programming languages such as BASIC and

Pascal. Some schools may offer an additional computer technology class where students

are educated on how to sift through the immense amount of information available to them

on the Internet for research purposes, and use various software to create multimedia

presentations and projects, but rarely do these supplemental classes introduce students to

CS and its applications, or exist uniformly across districts and regions that have varying

financial and logistical resources. A transformation and return to CS fundamentals

appears to have occurred in recent years, as a resurgence of computer coding, fueled by

national initiatives and non-profit organizations, has captured the attention of important

and influential stakeholders ranging from parents to policy-makers. Countries around the

world have recently adopted CS as part of their school curricula, e,g, the UK and

Denmark (Caspersen & Nowack, 2013); Russia, South Africa, and Israel (Zur-Bargary,

2012); New Zealand (Bell, Andreae, & Robins, 2012) and South Korea (Choi, An, &

Lee, 2015) to name a few.

In the book Connected Code, Kafai and Burke (2014) describe the return of

interest in teaching children coding as a result of increased recognition that thinking like

a computer scientist is an important step in solving real-world problems, designing useful

systems, and succeeding across disciplines. The authors explore the aspects of

www.manaraa.com

 22

programming that are appealing to children, the contexts in which children use

programming, and how children learn to program specifically using the Scratch

programming environment (an extension of the Logo programming language). By

focusing on: a) how computer coding can be applied to make things, e.g., video games

and digital stories; b) the ways in which it is not just an individual venture but also

increasingly a social activity; c) how repurposing or “remixing” computer code affects

skill acquisition; and d) how code can be used in beyond the computer screen, e.g.,

robotics, the authors explain how computer coding has once again become a topic of

interest in education, and why it is now as important as ever.

The introduction of the Scratch programming environment has influenced how

children learn to code, how educators can utilize the platform to teach CS concepts and

academic content, and how researchers can better understand what it means to think

computationally. Scratch is a simplified, easy to use, and powerful introductory

programming environment that was born out of the MIT-based Lifelong Kindergarten

research group, extending the development of Logo Mindstorms for the Lego Company

to create a playful programming language that, much like snapping Lego bricks together,

became a visually-based, drag-and-drop, block-command environment (Resnick, Kafai,

& Maeda, 2003). Scratch follows Papert’s (1980) guidelines to a successful programming

language and environment intended for use with young learners, i.e., a low floor, a high

ceiling, and wide walls. In other words, the syntax of the language should allow students

with no background whatsoever in computer science the ability to write and understand

programs (low floor), while also allowing users to fine tune their skills to create infinitely

complex programs to solve increasingly complicated problems as their familiarity and

www.manaraa.com

 23

skills increase (high ceiling), and support many different types of projects, so that users

who possess a wide variety of interests and skillsets can interact and create on a personal

level (wide walls). The Scratch environment encourages “tinkering” to create

personalized digital media ranging anywhere from animations to games. Users arrange

various command blocks to create stacks of code that can include loops, conditionals,

variables, data structures, and even user-created functions (Resnick et al., 2009). The

Scratch website (www.scratch.mit.edu) serves as a community hub for member-created

projects for others to view, interact with, and “remix.” Due to its easy to use and visually

pleasing design and interface, Scratch has become popular among children, teachers, and

researchers alike.

Computational Thinking as a 21st Century Literacy

Coding is a critical skill, and has even been described as a new literacy for all

children (diSessa, 2000; Rushkoff, 2011), but what does “coding” mean? Essentially,

coding is applying the language of computers to achieve a desired result. The term has

risen in popularity in recent years (Kafai & Burke, 2013), and to understand what it truly

means to code, one must also understand what it means to think computationally.

Computational thinking (CT) in its modern conceptualization, was popularized

after Jeannette Wing published an article using and describing the term in the March

2006 edition of the Communications of the ACM. Wing (2006) defined CT as designing

systems for more effective problem solving with computers. The Royal Society (2012)

describes the essence of CT by stating that it is “the process of recognizing aspects of

computation in the world that surrounds us, and applying tools and techniques from

Computer Science to understand and reason about both natural and artificial systems and

www.manaraa.com

 24

processes” (p. 29). Wing (2008) elaborated on her original definition by suggesting that

CT is the automation of abstraction; moreover, it is a process of design that attempts to

answer the questions, what are computers better at, and what are humans better at? In an

article featured in The Link magazine (a magazine of the Carnegie Mellon University

School of Computer Science) in March of 2011, Wing was inspired by electronic

discussions among colleagues to addend her definition of computational thinking to

encompass the following: “Computational thinking is the thought processes involved in

formulating problems and their solutions so that the solutions are represented in a form

that can be effectively carried out by an information-processing agent” (Wing, 2011).

One of those colleagues, Al Aho, defines CT as the thought processes involved in

formulating problems so that their solutions can be represented as computational steps

and algorithms (Aho, 2012).

Brennan and Resnick (2012) provide a framework of analyzing computational

thinking across the following three dimensions: “computational concepts,” i.e.,

sequences, loops, parallelism, events, conditionals, and data structures; “computational

practices,” i.e., being incremental, reusing and remixing, testing and debugging, and

modularizing and abstracting; and “computational perspectives,” i.e., expressing,

connecting, and questioning. The last dimension refers to the way that designers view and

engage with digital media. This operational definition for CT has subsequently been used

to categorize the CT literature by various researchers (Kafai & Burke, 2016; Lye & Koh,

2014). Grover and Pea (2013) discuss computational thinking using Brennan and

Resnick’s (2012) three-pronged operational definition and provide an overview of how

computational thinking in education in the United States has yet to be realized in the K-

www.manaraa.com

 25

12 arena. The authors conclude with a call for research investigating developmental

expectations and trajectories associated with aspects of computational thinking.

Likewise, Lye and Koh (2014) used Brennan and Resnick’s (2012) three-pronged

definition of computational thinking to analyze 27 studies of computer programming

activities carried out in K-12 and Higher Education settings. The authors included only

articles published in peer-reviewed journals in their search criteria. They identified nine

studies in the literature that were carried out in the K-12 environment, and concluded

their review by highlighting the importance of studying the developmental trajectory of

computational thought processes in young children, specifically calling for examination

of learning outcomes outside of the computational concepts component of Brennan and

Resnick’s (2012) operational definition of CT. They also point out the need for more

studies in the classroom environment, as opposed to after-school programs.

In response to these calls for developmental clarification, Selby, Dorling, and

Woollard (2014), working for the Computing at School (CAS) organization in the UK,

attempted to delineate the definition of CT by developing the “Computing Progression

Pathways” framework for the assessment of CT skills. This endeavor was undertaken to

provide standards or the National Curriculum Program for the Department of Education

in the UK across CT areas and over a range of developmental stages. These researchers

used Selby and Woollard’s (2013) conceptualization of CT skills, which was developed

by establishing the following criteria for CT thought processes through a literature review

of CT definitions: abstraction, decomposition, algorithmic design, evaluation, and

generalization. They then categorized each stage of development across content

categories according to these CT thought processes. The framework specifically outlines

www.manaraa.com

 26

developmental expectations across content categories of the CAS curriculum, i.e.,

algorithms, programming and development, data and data representation, hardware and

processing, communication and networks, and information technology, and provides

narrative descriptions for various age ranges across CT concepts, i.e., algorithmic

thinking, evaluation, decomposition, and generalization across age-bands (Computing at

School, 2012). Similarly, The CS standards released by the CSTA in 2017 is organized

broadly by age level, as well as CS concepts and subconcepts, with associated practices

across age levels and subconcept areas (CSTA, 2017). The hope is that by providing age-

based expectations for CT skills and CS concepts, researchers and educators will be more

effectively able to teach students and measure their student learning. These frameworks,

however, may need further validation research to solidify the normative developmental

trajectory across ages, but regardless of whether or not they are reliable and valid

standards evidenced through empirical support, they may serve as useful tools for more

inexperienced instructors to better measure and incorporate CT in their lessons and

activities.

How Can Educators Best Support the Development of CT Skills?

Researchers and professional organizations, e.g., the CSTA, have urged the field

of computer science education to develop practical ways in which educators can

incorporate the tenets of CT into their daily classroom activities. Barr and Stephenson

(2011) outline core computational thinking concepts and corresponding ways that these

concepts can be represented in various academic subjects. For example, they suggest that

the CS principle of abstraction, i.e., the use of procedures to encapsulate a set of often

repeated commands that perform a function (conditionals, loops, recursion, etc.) is

www.manaraa.com

 27

analogous to summarizing facts, and deducing conclusions from facts in the academic

area of social studies. The development of transposable CS standards that are easy to

align with academic content is the beginning of fostering CT skills in K-12 education,

and moving forward, the challenge to proponents of CT in the K-12 curriculum will be to

translate these standards into understandable, easy-to-implement activities across grade

levels and subjects even for teachers who do not consider themselves skilled or

knowledgeable in computer science. Efforts to integrate CT into core curricula have been

made by professional associations, e.g., the CSTA, ISTE, and non-profit organizations

like Code.org, Computing at School, Globaloria, and Shodor, which provide materials

and instruction relating to computational science (“Shodor,” 2016), as well as corporate

entities, e.g., Google’s Computational Thinking website (www.google.com/edu/ect) that

offers videos explaining what CT is, and resources for educators to facilitate the

integration of CT in the classroom. An innovative group based in New Zealand has even

developed ways to introduce CT skills without the use of computers. The Computer

Science Unplugged website offers a collection of free learning activities that teach

concepts such as binary numbers, algorithms, and data compression through games and

puzzles using easily producible classroom materials (www.csunplugged.org). The

resources to teach CT in the K-12 environment exist, but implementing them on the

ground is a challenge that may still take time and energy to overcome.

Despite efforts to integrate CT in the classroom, students in the K-12 arena

predominantly engage in computer programming activities in out-of-school camps or

clubs (Lye & Koh, 2014). While informal learning settings have been shown to enhance

scientific reasoning ability (Gerber, Cavallo, & Marek, 2001), these environments pose

www.manaraa.com

 28

difficulties for educators, as both student and teacher motivation toward learning

objectives may differ from more formal settings (Kisiel, 2005; Lucas, 2000). While many

studies of out-of-school time (OST) enrichment programs demonstrate some positive

impacts across social and academic areas, these environments are associated with low

student attendance, and difficulty implementing structured activities and tasks (Dynarski,

James-Burdumy, Moore, Rosenberg, Deke, & Mansfield, 2004). Fostering CT skills

through explicit instruction and supplemental activities during school hours may,

therefore, be met with greater student engagement and learning outcomes.

Although some aspects of CT can be taught to early elementary students,

especially through the CS Unplugged initiatives that require little to no familiarity with

computer code in the traditional sense, the middle school years are particularly important

for students to develop and grow the cognitive and social skills needed for future

educational endeavors, especially within the STEM fields (Tai, Liu, Maltese, & Fan,

2006). One reason that many of the studies in the field of computer science education

have focused on the middle school years (ages 11-13) is the notion that abstract thought

emerges during this developmental period (Piaget, 1936). Being able to conceptualize

information in an abstract way is a central concept in computer science and this idea is

even captured in the very definition of computational thinking (CSTA, 2011). This is not

to say that children below this age band are incapable of learning CT skills, and in fact

there is evidence that some children as young as seven can benefit from learning about

computational concepts (Li, 2010). In an exploratory case study Fessakis, Gouli, and

Mavroudi (2013) used a series of Logo-based activities with kindergartners in tandem

with an interactive whiteboard to input navigational commands for a ladybug sprite to

www.manaraa.com

 29

hide under a leaf. Results indicated that the children actively participated and enjoyed

solving problems through planning and trial-and-error methods, and their mathematical

skills related to direction and orientation seemed to improve through participation in the

activities; however, the authors provided no quantitative measures to support their claims.

It is, therefore, important for educators to consider introducing young children to the

world of computer science through hands-on computerized and non-computerized lessons

at an early age, and continue to foster the development of CT skills throughout early to

middle childhood.

Games and Game-Based Learning

The most popular way in which proponents of computational thinking have set

out to teach these skills to young learners is through designing games (Wu & Richards,

2011). The cognitive benefits of playing games was recognized long before computers

became an integral part of daily life, as evidenced in Piaget’s (1951) work that explored

the developmental importance of game play as a way for children to refine and apply

their understanding of rules. As one of the founders of constructivism, Piaget viewed the

construction of games one of the foremost methods of game play. Kafai and Resnick

(1996) use the constructionism perspective to frame a discussion on the impact of

computational technologies on children’s learning, education, and knowledge.

Specifically, they focus on how creating computer games and other projects, as opposed

to merely playing computer games, can influence how children learn through design. Gee

(2003) wrote extensively about the potential of both playing and designing video games

as an avenue to promote learning and literacy. He argued that giving students the chance

to personalize their own game could be a powerful way to engage students, and instill

www.manaraa.com

 30

within them a sense of pride and accomplishment that facilitates learning. He went on to

outline 36 educational principles that could be cultivated in the design and play of video

games. Squire (2006) described how the experience of playing games affects the ways

players think about history, physics, and academics in general. Furthermore, he argued

that making games through computer programming activities would be an even more

powerful way of affecting the ways in which players learn and think about the world.

Squire (2006) has gone as far to say that traditional educational pedagogies should adjust

the delivery of academic content to match the changing times; moreover, that engaging

students to think critically about the world can and should be accomplished through

gameplay and game design.

Hayes and Games (2008) provide a review of the various novice-oriented

computer software for designing and making games available at the time, as well as the

instructional strategies intended to engage young learners in making games. The

researchers separate lines of research into the following four themes: game creation as a

way to teach programming tools or concepts, game creation as a way to bring more girls

and women into the field of computer science, using games to teach academic content,

and game creation to learn specifically about how games are made.

The enormous success of the video game software industry in the 1990s, when

software publishing companies grew to become some of the most successful businesses

in history, changed the ways computers were used in the classroom (Cuban, 2001). In

attempts to capitalize on youth’s fascination with video games, researchers in the field of

computer science education began to develop more appealing interfaces with game-

making functionality to teach computer programming concepts. Soon, they found that

www.manaraa.com

 31

exposure to programming through an introductory, guided, game-based curriculum

increased knowledge and confidence in programming concepts, which is an important

factor for students to continue their computational explorations beyond the classroom or

research setting (Al Bow, Austin, Edgington, Fajardo, Fishburn, Lara, Leutenegger, &

Meyer, 2009). Nearly every study in the current review in some way used an aspect of

computer game design or game-like activity as part of its instructional strategy to teach

fundamental computer science concepts, partly due to the influence of Papert’s (1991)

idea of constructionism. For a thorough review of the educational benefits of student-

created games, see Kafai and Burke’s (2016) synthesis of 55 studies in the K-12

environment that summarizes and categorizes empirical endeavors across Brennan and

Resnick’s (2012) operational definition of CT, i.e., computational concepts,

computational strategies, and computational perspectives.

Educators and researchers generally agree that youth may be able to gain valuable

skills across a range of educational competencies through both game design and game

play, but the development of CT skills, specifically through game design, is not purely

individual pursuit, and in fact can be enhanced by encouraging or requiring youth to work

collaboratively, and provide feedback regarding one another’s work.

Peer Critique and Collaboration

Involving peers in the development and critique of programming processes and

products has been used as one way to increase learning of programming concepts. For

example, paired programming has been a common practice in university settings, and has

also been introduced into the K-12 environment as an instructional strategy to help

students learn programming skills together (Werner, Hanks, & McDowell, 2004).

www.manaraa.com

 32

Peer feedback has also been linked to improved student outcomes. For example,

Hwang, Hung, and Chen (2014) separated students into treatment and control groups

differing in whether students received feedback from their peers about their projects.

Students took a pre-test designed to measure background content knowledge, learning

motivation, and problem solving skills before participating in a computer game

development course. These 167 Taiwanese 6th grade students worked to develop

computer games using Kodu, a software developed by Microsoft, as part of an

environmental science unit on the effects of global warming. Fifty-minute long game

design and development sessions were held once a week for ten weeks and students in the

treatment group were allowed to give feedback to their peers on the enjoyment,

appearance, completeness, accuracy, and relevance of their game design while students in

the control group received no feedback from peers. At the end of the ten weeks, students

took a post-test and the treatment group answered open-ended questions. Students in the

treatment condition showed significantly greater ratings of learning achievement,

problem solving skills, learning motivation, in-depth thinking, and creativity. The authors

conclude that peer-based assessment can enhance that student’s learning achievements

and problem solving skills. Also, students in the reviewing treatment group reported

higher levels of enjoyment, which indicates that peer-based assessment can be used as a

tool to engage students in game development activities.

In another study, Su, Yang, Hwang, Huang, and Tern (2014) examined how peer

feedback facilitated by a digital tool to make annotations to student projects in the

Scratch programming environment, as well as differing pedagogical strategies, impacted

problem solving and programming conceptual knowledge. Four classes of students

www.manaraa.com

 33

totaling 135 sixth grade Taiwanese students participated in two Scratch units over six

weeks in various conditions of instructional strategies and differing levels of peer

feedback. Results showed that students who critiqued other students’ annotations of their

thoughts throughout the computer programming activities in Scratch combined with

explicit instruction in solving programming problems in a stepwise manner showed

increased understanding of programming concepts as measured by a criterion referenced,

instructor-created test of programming conceptual knowledge that consisted of a

combination of multiple choice and project-based items.

Other more qualitative studies have also indicated that programming is learned

best when it is learned in the context of a community environment where members are

able to give and receive feedback on their programmed artifacts. For example, Baytak

and Land (2011) and Werner, Denner, and Campe (2014) incorporated peer feedback and

programming in pairs within their studies and reported that students demonstrated

learning gains in the domains of computational thinking, and reported greater levels of

understanding and enjoyment of programming-related activities.

What Can Students Learn While Participating in Programming Activities?

Programming Conceptual Knowledge

The most obvious learning outcome of participating in any type of activity that

engages individuals with core programming concepts would be an increase in knowledge

of said concepts. A large number of studies have investigated whether young learners

actually do learn about the fundamentals of computer science and the results generally

support that some degree of programming conceptual knowledge is attained after

engaging with computer programming tools. In one example, Maloney, Peppler, Kafai,

www.manaraa.com

 34

Resnick, and Rusk (2008) introduced Scratch in an urban community center located in an

impoverished neighborhood in Los Angeles, CA. The authors qualitatively describe the

results of a yearlong observation period accompanied by descriptive statistics regarding

youth-created projects; however, there was no control group for comparison of learning

outcomes of youth not engaging in computer programming activities. The researchers

took a hands-off approach to teaching Scratch, choosing to make research assistants

available to answer student’s questions rather than providing direct instruction on the

functionality and features of Scratch. Although the presence of researchers in and of itself

may have impacted youths’ behavior and motivation to learn Scratch, the authors found

that a culture of computer programming seemed to emerge, and that by creating projects

in Scratch, youth demonstrated understanding of core computer programming concepts.

The study not only highlights the collaborative and creative nature of the Scratch

environment, but also the supportive and assistive aspect of the community center in

relation to initial interests in pursuing Scratch projects. The researchers’ assessment of

programming knowledge, however, did not go beyond qualitative description so it

remains unclear as to whether or not students actually understood the concepts they were

using in their projects.

In one study that investigated how children learned programming conceptual

knowledge, Baytak and Land (2011) used computer game development as a peer tutoring

experience to bolster fifth grade students’ computational thought processes. The

researchers asked fifth graders to use Scratch to design computer games that were to be

used to teach second grade students about environmental science. The study took place

over the course of 21 sessions that included planning, design and development, and

www.manaraa.com

 35

testing phases. A science teacher was present during all sessions to answer questions, and

students were encouraged to collaborate with one another. In order to assess students’

knowledge of programming concepts, the researchers coded command blocks of each

student’s game into the following categories: statements, Boolean expressions,

conditionals, loops, variables, threads, and events. The authors present narrative and case

studies describing the student-created games and the game development process. They

conclude that creating computer games within an academic context is a dynamic learning

process that involves goal setting, information seeking, and problem solving through

inter-student collaboration, and that a visually-based software environment (as opposed

to a more traditional text-based programming environment) can help elementary students

access and understand complex programming skills; however, the authors point out that

the results were more exploratory and descriptive, rather than conclusive.

While the above studies were more qualitative in nature, Denner, Werner, and

Ortiz (2012) investigated computer games created by 6th grade girls in an after-school

program over the course of three months by a mixture of quantitative and qualitative

approaches to understand whether students who used various types of code actually

learned the corresponding CT concepts. Each participant or pair of participants created

several games using the Stagecast Creator programming software, a novice-oriented,

graphically-based, introductory programming environment with functions corresponding

to foundational CT concepts and algorithmic thinking, e.g., objects and inheritance,

methods, events, and code documentation. In order to determine the percentage of games

that included various aspects of CT concepts, the researchers analyzed each game across

24 computer-code categories separated into three broad computer science competencies,

www.manaraa.com

 36

i.e., programming, code organization and documentation, and designing for usability.

Results indicated that the youth did not use more complex programming features while

creating their games, despite qualitative descriptions of high interest in the activity. The

authors conclude that additional instructional support is needed in order to engage

children of this age in more complex coding methodology. Whether these youth, or

others engaged in similar computer programming activities, actually learned the CT skills

they demonstrated by the incorporation of specific codes and sequences in their projects

is subject for debate, however.

In a more recent study offering further mixed evidence to support the notion that

although students may demonstrate interest, engagement, and completion of computer

programming tasks, they may not necessarily understand the underlying concepts and be

able to transfer this knowledge to a novel environment. Grover, Pea, and Cooper (2015)

investigated whether student knowledge of algorithmic concepts, i.e., serial execution,

looping constructs, and conditional logic, transferred to text-based programming

languages after using Scratch in a design-based curriculum using both a face-to-face and

blended classroom with children ranging in age from 11 to 14 years in a public school

setting. The researchers used weekly quizzes and a pre/post-summative test to evaluate

whether students were able to understand programming concepts and found that student

knowledge of basic algorithmic flow of control in computational solutions was increased

from pre to post-test; however, students demonstrated more difficulty understanding

loops and variables. The knowledge transfer test was conducted in a novel, text-based

programming language and focused heavily on loops and variables; thus, student

performance did not show substantial understanding of these concepts. Additionally, the

www.manaraa.com

 37

researchers noted that student performance on programming conceptual knowledge tests

did not differ significantly whether students were in face-to-face classroom or blended

classroom condition.

Problem Solving Skills

Extensive research and theorizing about the relationship of problem solving to

cognition suggests that the process of solving problems is a fundamental characteristic of

thinking (Mayer, 1977; Sternberg, 1994), and although discussion of this research is

beyond the scope of this review, problem solving can generally be broken down into the

following domains: knowledge representation, conceptual categorization, deductive

reasoning, and inductive reasoning (Sternberg, 1994). One of the most widely touted

claims about participation in computer programming is that it has the potential to

improve general problem solving abilities. The supposition is that instructing a computer

program to enact a set of rules to achieve a desired function is in itself a problem solving

process, and that engaging in such activities can generalize more broadly to enhance

problem solving ability.

In an early attempt to answer the question as to whether computer programming

positively influenced cognitive outcomes, which served as an over-arching category and

primarily included various measures of problem solving skills, a meta-analysis conducted

by Liao and Bright (1991) analyzed the learning outcomes of 65 studies involving

computer programming in education, of which 89 percent reported positive effect sizes,

resulting in an overall moderate grand mean effect size (0.41). One issue with this

analysis, as is the case with all meta-analyses, was that the authors considered the

assortment of student learning measures in the same way, i.e., as uniformly standard

www.manaraa.com

 38

measures of cognitive skill determined by tests at the end of programming instruction.

Although they concluded that computer programming can lead to improved student

learning, mainly in reasoning skills, logical thinking, planning skills, and general problem

solving skills, a more thorough understanding of how the studies included in the analysis

measured these cognitive outcomes, and their validity is warranted in order to make such

claims.

Some studies have looked at incorporating explicit modeling or teaching of

problem solving strategies directly could affect their experiences in computer

programming. For example, Akcaoglu and Koehler (2014) chose the Kodu programming

environment in an after-school setting and used a computer game-design curriculum that

was paired with instruction that explicitly taught the steps of problem solving as

described in previous literature the following four-step process: representing, i.e.,

understanding the problem, planning, i.e., devising a solution by decomposing the

problem, executing, i.e., putting the plan into action, and evaluating, i.e., checking to see

if the plan resulted in achieving the goal (Jonassen, 2004; Polya, 1957). The researchers

measured performance on questions from the Program for International Student

Assessment (PISA) designed to measure students’ skill at solving the following three

problem types: systems analysis, decision-making, and troubleshooting. Results indicated

that participants in the experimental group significantly outperformed those in the control

group who did not receive the game-based design instruction, leading them to conclude

that game-design through computer programming can improve problem solving skills.

There have been a number of studies in the field of computer science and

education investigating whether or not problem solving skills are indeed enhanced

www.manaraa.com

 39

through computer programming activities, and while there is evidence to support the

claim, questions remain for how problem solving is measured, and how to best facilitate

learning. To understand how computer programming activities relate to problem solving

skills, it is important to keep in mind that in order to be successful with the former, a

prerequisite skill level in the latter is necessary. Without sufficient scaffolding in the

problem solving process, learners may not be able to make the conceptual leaps needed in

key CS areas and CT skills, and thus, experience success with their creations. In this way,

a bidirectional relationship may exist between problem solving abilities and computer

programming, and by teaching students about how to think about thinking, they may be

better able to solve problems, and achieve their goals in computer programming activities

more successfully.

Metacognitive Skills

Metacognition is a higher-order thinking skill that is best described as thinking

about thinking (Flavell, 1976). The most common method of measuring metacognitive

skills in research is through a think- aloud technique in which individuals describe their

thought processes verbally while completing a task or solving a problem. Clements and

Nastasi (1999) used Sternberg’s (1985) componential framework of cognition to

qualitatively evaluate how the Logo programming language affected children’s

metacognition across a number of studies. They concluded that participating in Logo

programming activities beneficially affected children’s metacognitive thought processes,

but emphasized the interaction of socio-developmental factors underlying metacognition

on both a conscious and unconscious level. The authors call for a closer examination of

www.manaraa.com

 40

the evolution of metacognitive thought as it relates to programming in the Logo

environment.

More recently, Allsop (2015) studied the way students in the UK thought

throughout their programming experiences using a thought-mapping technique. The study

included 30 ten to eleven-year-old children with one-hour prior programming experience

in Scratch. Participants were first asked to diagram on a sheet of paper how they learn in

any subject before they began a one hour per week computer game design course using

the Alice programming environment. They were encouraged to update their “thinking

maps” whenever they felt like it, and at the conclusion of the course, they were again

asked to draw another thinking map. Results showed that children’s thinking maps

became more continuous and “circular” during and after participation in the game design

course, reflecting a trial-and-error, iterative approach to game creation and thinking.

While methodological issues permeate the measurement of metacognitive thought

processes, evidence seems to suggest that programming can positively affect the way in

which chilren think about thinking.

Academic Skills and Content

Many of the early studies involving the relationship of academic skills to

computer programming focused on mathematical thinking skills due to the intrinsic

nature of the two. For example, Feurzig (1986) studied how Logo could be used to

enhance student understanding of the algebraic concepts of variables and functions.

Similarly, Noss (1986, 1987) examined how children learned algebraic and geometric

concepts while programming in Logo. Olive (1991) analyzed text files of 30 ninth grade

students’ work in Logo along three theoretical perspectives of understanding geometrical

www.manaraa.com

 41

relations and found that successful programming in Logo generally led to increased

understanding of geometrical relations across the various taxonomic levels of the

theoretical perspectives used in the analysis. Kafai (1995) investigated the ways in which

fractions could be learned by deliberately incorporating them in student-designed games

in the Logo environment.

More recently, Schanzer, Fisler, and Krishnamurthi (2013) developed the

Bootstrap curriculum specifically to improve middle and high-school students’

knowledge of algebraic concepts and coordinate geometry through guided game-making

activities. Following the development of the Bootstrap curriculum, this group of

researchers introduced the curriculum to over 500 students across states and cities in

America from 2008-2012. In 2015, they looked at pre/post-test results of algebra

problems for students who either completed the Bootstrap program (n = 123) or were in a

control group class (n = 26) and compared their performance on word problems taken

from the algebra section of the Massachusetts 8th grade standardized test in math. The

programming syntax of the Bootstrap curriculum mimicked the manner in which

mathematical functions were laid out in the selected assessment, e.g., f(x) = x + 5, and

activities connected the computer code to visual computer-based models representing

mathematic principles, e.g., motion, variables, and geometry. Students who had training

through the Bootstrap program performed significantly higher than students who did not

partake in the training (Schanzer, Fisler, Krishnamurthi, & Felleisen, 2015).

While the Bootstrap curriculum seems to provide evidence that by directly

incorporating or structuring lessons and activities around mathematic concept areas,

mathematical ability is more dramatically improved, Columbian researchers Calao,

www.manaraa.com

 42

Moreno-León, Correa, and Robles (2015) analyzed students’ math performance after

programming in Scratch. They used a pre/post-test design incorporating an experimental

and control group of 42 sixth grade students who either took part in Scratch programming

activities over the span of three months, or attended their regularly scheduled math

classes for the same time period. The researchers used a 16 item rating scale based on

national standards put forth by the Ministry of Education of Columbia across four areas –

modeling, reasoning, problem solving, and exercising –as their dependent variable.

Students in the experimental group obtained significantly higher ratings of mathematical

processing on all rated areas measured, showing large differences in the area of

exercising, i.e., algorithmic thinking, while ratings of the control group declined across

three out of the four areas. Although this study did not include any standard measure of

student mathematical ability, and it was unclear the amount of computer programming

time students received over the course of the three-month-long study, its design and

inclusion of a comparison group that had general math instruction instead of Scratch

programming provides further evidence that programming can aid in advancing student

understanding and application of mathematical concepts.

Mathematics has been the primarily targeted academic skill area studied in

relation to computer programming activities in education; however, there have been some

studies investigating how other academic skill areas can be affected by incorporating

computer programming activities in instruction (Baytak & Land, 2011; Hwang, Hung, &

Chen, 2014). One such study conducted by Khalili, Sheridan, Williams, Clark, and

Stegman, (2011) used the Game Maker software to create two and three-dimensional

games during a summer program in an underserved American community. Sixteen high

www.manaraa.com

 43

school students spent two to three hours per day for four weeks in groups of four

designing games based on the Federation of American Scientists’ (FAS) “Immune

Attack” educational science game to explain concepts in neurobiology with assistance

from a lead classroom instructor knowledgeable in game programming, three college age

mentors, and electronic communication with a scientist at the FAS. The researchers used

interviews with students, classroom observations of the students at various points in the

game design process, and email communication with the science subject matter expert

from the FAS to evaluate student learning throughout the program. The authors analyzed

these data and formed thematic conclusions about student learning indicating that

students questioned their own knowledge about biology and voluntarily sought out

answers to their questions, as well as demonstrated gains in their ability to explain and

articulate complex scientific processes previously unknown to them. Although this study

is qualitative in nature, and was composed of high school students, it highlights the deep

level of understanding that can be achieved for specific academic content through

programming activities rooted in game making.

In relatively rare study investigating how creating with computers could affect

children’s reading and writing skills, Owston, Wideman, Ronda, and Brown (2009)

provided classroom instruction that incorporated the use of a game development program

called Education Games Central in a large randomized control trial of 18 fourth grade

classrooms. The researchers investigated whether creating games on computers could

improve basic literacy skills when incorporated into regular classroom instruction across

curricular units. Education Games Central draws upon the format of a variety of

traditional board games, e.g., tic-tac-toe, and prompts users to generate questions related

www.manaraa.com

 44

to predetermined curricular objectives in order to move through the game. A standardized

test of basic literacy skills with two forms (A and B) in a pre/post-test format, and an

adapted version of a standardized test of written language as a post-test served as

dependent variables. They found that students in experimental conditions performed

significantly better than students in control groups on a subtest of the writing skills

assessment measuring logical sentence construction that asked students to correct an

illogical sentence; however, the effect was relatively small (η" = .031). Qualitative

observations and interviews with teachers showed that their perception of student

learning in literacy improved more in experimental groups, and that teachers thought the

skills learned in classes that used game development activities would be more likely to be

retained by students. Although the programming activities students participated in

throughout this study differ markedly from other literature in that students were not asked

to construct computer code, but rather generate questions based on curricular content to

be incorporated into a larger game program, it nonetheless provides some of the first

quantitative evidence to suggest that writing skills can improve through participation in

such activities.

Creative Thinking Skills

The ability to think creatively is a crucial part of the human condition, and

necessary to many aspects of effective problem solving and design processes. Measuring

creativity, however, is inherently difficult as it involves degrees of situational spontaneity

not often captured in a standardized way. One way to measure creativity that researchers

around the world have used for many years is the Torrance Tests of Creative Thinking

(TTCT) (Torrance, 1966). Rooted in Guilford (1967) and Torrance’s (1969)

www.manaraa.com

 45

conceptualization of creativity, the TTCT measures divergent production characterized

by fluency (the production of ideas), flexibility (the production of different ideational

categories), originality (the production of unusual ideas), and elaboration (the persistency

of introducing details to products) (Almeida, Prieto, Ferrando, Oliveira, & Ferrándiz,

2008). Almeida et al. (2008) used factor analysis to evaluate the construct validity of the

TTCT in three large sample empirical studies from Spain and Portugal and found

inconsistent factor structures that did not align with purported facets of divergent thinking

claimed to be measured by the TTCT. Leandro, Lola, Mercedes, Emma, and Carmen

(2008) have even posed questions to the validity of the TTCT’s evaluation of creativity as

a construct. Nonetheless, researchers have often turned to this measure as a valid way to

measure creativity in research settings.

Clements (1986) looked specifically at how programming in Logo affected a

variety of cognitive outcomes, and included the TTCT as a measure of creativity. Groups

of first and third grade students worked in pairs twice per week across 22 weeks either on

sequenced activities in Logo, or drill-and-practice educational software activities

designed to teach academic content. The control group did not participate in computer

lessons and attended class as usual. Results indicated that both first and third grade

students in the Logo condition achieved significantly higher gains on the TTCT,

specifically in the areas of originality and elaboration. The researcher notes, however,

that the generalizability of the findings should be interpreted cautiously as students

participating in the study had access to a dedicated and knowledgeable instructor

throughout each training session. Clements (1986) does point out that the observed gains

in cognitive outcomes could be attributed to the types of activities students engaged in

www.manaraa.com

 46

while using the computer rather than merely using the computer itself due to the inclusion

of an experimental condition that involved computer instruction, but not programming.

A more recent research effort specifically to focus on creative problem solving as

it relates to computer programming was conducted by South Korean researchers Kim,

Chung, and Yu (2013), who used a sequence of training modules in the Scratch

programming environment designed to promote real-world creative problem solving

skills through explicit instruction to solve programming problems within a six-step

problem solving framework designed to promote imagination, creation, collaboration,

and reflection by using various commands to program coded sequences. Both typically

developing adolescents in South Korea (n = 119), and those identified as gifted (n = 30),

were randomly assigned to treatment and control groups followed by 16 weeks of

training sessions in Scratch. The researchers developed a synthetic creative problem

solving test (SCPST) based on previous work by the Korean Educational Development

Institute (ED.) (Cho, Jang, Jung, Lim, & Park, 2002) to use as their primary measure of

student creativity. The test includes word problems that prompt students to develop

creative solutions to problems, e.g.,

Now the world is making an effort to protect depleting energy resources.
Bicycles are especially popular because they do not consume energy
resources and emit exhaust. What would you do if you could improve the
disadvantages of the current bike? Let’s write as much as possible about
an idea to upgrade anything that is inconvenient. (Kim, Chung, & Yu,
2013, pp. 177)

They validated the test by pre-testing a separate group of students with the measure and

comparing correlations of test scores to student scores on other instruments claiming to

measure creativity, e.g., the TTCT. The test correlated moderately with the TTCT Figural

test (r = .62), but there was very little correlation with the TTCT Verbal test (r = -.48).

www.manaraa.com

 47

The authors explained this low correlation with the TTCT Verbal by arguing that because

the content of the questions was science-related, only logical answers received a score;

thus impacting the way scores are calculated and compared across measures. The authors

thus concluded that the SCPST was a valid measure of divergent thinking, logical

thinking, and scientific problem solving ability and scored student responses the

following five dimensions: fluency, elaboration, sensitivity, openness, and flexibility.

Results showed significant increases in digital fluency, which was defined by the

researchers as the ability to solve real life problems creatively using digital technology,

and originality. The researchers concluded that computer programming training can be

used to solve realistic problems and can enhance creative problem solving skills that

prove useful in many facets of life.

Assessing Learning in Computational Thinking

While there appears to be evidence that computer programming can improve

various cognitive and academic skills, the assessment of CT skills themselves poses

significant challenges, and is an area in which ongoing development in the field is taking

place. A variety of procedures and assessment techniques have been used in the literature

to assess student learning and development of CT skills. These range from think-aloud

interviews with students about their experiences and projects (Hwang, Hung, & Chen,

2014; Khalili, Sheridan, Williams, Clark, & Stegman, 2011), to analyses of the frequency

of types of code incorporated into projects (Baytak & Land, 2011; Denner, Werner, &

Ortiz, 2012; Werner, Denner, & Campe, 2014), interactive debugging tasks (Werner,

Denner, Campe, & Kawamoto, 2012; Su et al., 2014), and multiple choice assessments

(Grover, Pea, & Cooper, 2015; Straw, Bamford, & Styles, 2017). Some studies use

www.manaraa.com

 48

qualitative descriptions or case studies based on observations to describe how and what

students learn during the course of digital media creation, with a process-oriented,

descriptive, and exploratory approach (Fessakis, Gouli, & Mavroudi , 2013; Kafai,

Peppler, & Chiu, 2007; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). Each

assessment method has its unique pros and cons, selected according to the focus of the

investigation. What remains clear, however, is that a valid and reliable CT assessment

remains to be developed.

Adding to the growing need to define how to evaluate CT skills, Brennan and

Resnick (2012) not only outline a theoretical model to understand how to conceptualize

computational thinking, but also summarize three ways in which researchers and

educators can assess student learning, specifically in Scratch, and the associated pros and

cons for each. The first approach discussed utilizes a visual analysis of Scratch projects

or portfolios of using a tool called a Scrape visualization developed by researchers at the

College of New Jersey (Wolz, Hallberg, & Taylor, 2011). A Scrape visualization displays

blocks of code used by a Scratch user arranged in rows and color coded according to the

type of command block, with columns representing individual Scratch projects. This type

of analysis allows researchers to quickly assess an individual’s usage of various types of

code, as well as types of code that were not utilized at all. Furthermore, researchers are

able to inspect the evolution of a Scratch user’s use of code over time. In one example of

this type of assessment technique, Chang, Tsai, and Chin (2017) recently developed the

Dr. Scratch “web crawler” tool intended for analyzing Scratch users’ projects according

to seven CT principles (flow control, data representation, abstraction, user interactivity,

synchronization, parallelism, and logic), assigning a score for each CT skill area, and

www.manaraa.com

 49

providing data on student usage of various types of code. This type of web-based analytic

tool produces data about Scratch users’ projects quickly and efficiently, and could be

useful for instructors and researchers alike.

As with all product-oriented analyses of computational thinking, one limitation to

these types of analysis is that usage of code does not necessarily denote understanding of

the code. The second approach discussed by Brennan and Resnick (2012) involves

artifact-based interviews to evaluate individuals’ conceptual understanding of how and

why their projects functioned. This type of analysis is more labor intensive, and thus less

conducive to large-scale research efforts; however, it allows researchers to more fully

understand whether individuals truly grasped the computational concepts that enabled

their projects to function. A third approach, design scenarios, presents users with pre-

designed Scratch projects and asks them to explain what the project does, describe how it

could be altered and expanded, correct any mistakes, and modify the project by adding a

new element. This approach to assessing CT skills allows researchers to systematically

study how computational concepts and practices change over time, and enables users to

demonstrate their knowledge in the moment rather than recalling and verbalizing an

explanation at a later time. Variations of these three lines of assessing CT presented by

Brennan and Resnick (2012) have been used across studies not only in with Scratch, but

also in other novice-oriented programming environments.

One example of an interactive task-based assessment of CT skills is the “Fairy

Assessment” developed by Werner, Denner, Campe, and Kawamoto (2012) for the Alice

programming environment. The Fairy Assessment was designed to measure two

computational thinking principles identified by the Carnegie Mellon Center for

www.manaraa.com

 50

Computational Thinking, i.e., thinking algorithmically, and making effective use of

abstraction and modeling. The assessment uses the Alice programming environment,

which is an environment especially conducive to story-based games, to independently

assess whether students could execute programming tasks that were designed to represent

knowledge of the two CT skills under examination. Successful completion of the task

presumably relates to the underlying CT skills embedded within the task, suggesting that

this type of assessment is more thorough than simply documenting the types of code

contained within students’ projects, and the methodology can be applied similarly to

other programming environments.

To further understand whether students actually learned CT skills and could

demonstrate their application in a novel environment, i.e., transfer, Grover, Pea, and

Cooper (2015) measured how transfer of CT skills from the Scratch programming

environment to a text-based programming environment, e.g., samples of Pascal/Java-like

code borrowed from past AP exams in computer science. The preparation for future

learning (PFL) exam was administered to groups of students who had participated in a

structured Scratch coding class to see if their knowledge of Scratch could be applied to a

novel programming environment. The researchers explained and provided the syntax of

the new programming language before administering the test, which occurred at the end

of a seven-week Scratch curriculum. Results indicated that students were able to apply

some computational concepts, but struggled with applying concepts of loops and

variables in this new environment. The authors conclude that relatively weak student

performance on the PFL test, which included a large portion of items that required

understanding of loops and variables (concepts that students already had difficulty with in

www.manaraa.com

 51

the Scratch environment), focused too much on concepts that were not explicitly taught in

the Scratch curriculum selected for the study. The results of this study may be somewhat

disheartening for researchers hoping to demonstrate that engagement in novice-oriented

visually based programming languages like Scratch could be applied in more prevalent

text-based programming languages; however, students were able to transfer many ideas

learned in the Scratch curriculum to an environment in which they had extremely limited

experience.

An innovative analytic technique has recently been developed to understand on a

micro level how students use and modify their Scratch projects (Fields, Quirke, Amely, &

Maughan, 2016; Fields, Quirke, Horton, Maughan, Velasquez, Amely, & Pantic, 2016;

Pantic, Fields, & Quirke, 2016). The technique utilizes large amounts of JSON files,

which are text-based versions of Scratch projects, collected through the backend of the

Scratch programming environment in combination with front-end Scratch projects,

observations, and interviews to understand how students used various code blocks during

their work in the Scratch environment. The technique involves capturing snapshots of the

code blocks being used by students by saving JSON files every two minutes, or when

students switch from editing costumes, backgrounds, or sound back into coding. The

researchers developed a parser to analyze how students used various categories of code

within and across training sessions, and combined these data with interviews and

observations to better understand how students used code and understood computational

concepts. The results of the researchers’ efforts to more fully comprehend the ways in

which students use computational practices, e.g., remixing and debugging, and grasp

computational concepts shows promise and will undoubtedly help researchers and

www.manaraa.com

 52

computer science educators alike to develop new strategies for developing more effective

lessons, and evaluate student learning.

Finally, in a large-scale randomized control trial of coding clubs with 317

students in 21 schools in the UK, Straw, Bamford, and Styles (2017), working with the

Raspberry Pi foundation, utilized a unique measure of CT skills called the Bebras

Challenge, which is an online timed, 15-item set of scenarios related to CT areas as

conceptualized by Selby and Woollard’s (2013), to measure whether nine to ten-year-old

students learned CT skills after participating in a year-long coding club that was

composed of a mixture of Scratch, HTML/CSS, and Python activities and lessons. The

Bebras Challenge tasks involve no prior knowledge of programming language, so they

were suitable for a post-test in the control group. Items consist of multiple choice

responses, and students can sometimes interact with item response choices by trial-and-

error, which can be akin to testing or debugging. For example, students can test out

whether their sequences of directional arrows will get an object through a maze. This set

of CT-oriented tasks is part of an ongoing international competition originating in

Lithuiania in 2004 to better understand students’ ability to think computationally, and

promote the field of CS (Román-González, Pérez-González, & Jiménez-Fernández,

2017). In 2015, 1.3 million students from 38 countries in the 2015 challenge (Izu, Mirolo,

Settle, Mannila, & Stupurienė, 2017). Students who participated in code clubs in the

Straw, Bamford, and Styles (2017) study did not show a measurable improvement in

computational thinking as measured by the Bebras Challenge CT assessment when

compared to control students who did not attend code clubs, but they did show significant

improvements in their skills within Scratch, HTML/CSS, and Python.

www.manaraa.com

 53

State of the Field

From the above review of the literature, it is clear that participation in computer

programming activities in a variety of programming environments and pedagogical

strategies can impact learning not only in the domain of computational thinking, but also

in higher-level cognitive abilities (problem solving and metacognition), specific academic

content, (science, math, and literacy), and creative thinking abilities. The ways in which

computers have been used in the classroom have undergone significant changes over the

past 30 years, and a return to the fundamentals of computer programming as an important

21st century skill is well underway across primary and secondary classrooms around the

world. While researchers in the 1980s and 1990s studied thought processes associated

with computer programming in educational environments, and found some evidence for

learning gains, their results lacked an underlying conceptual framework to synthesize and

make sense of what children learned and the manner in which they learned. The relatively

recent emergence of the term computational thinking is a way to operationalize the ways

in which children learn computer science concepts and practices. Translating the findings

of early computer science education researchers within the CT paradigm has been

suggested as an important endeavor to inform current research and practice (Grover &

Pea, 2013).

The assessment of CT is also an area that continues to develop as researchers

further refine the definition of what it means to think computationally, and create new

ways to evaluate what and how students learn while they code. Despite some evidence

that highly valued cognitive skills and academic knowledge can be improved through

computer programming activities, questions still remain regarding how educators can

www.manaraa.com

 54

best support the development of computational thinking in the school environment. The

focus on improving traditionally valued academic competencies serve as an obstacle for

educators, policymakers, and researchers to overcome in order to successfully integrate

coding in the classroom. Movements to create clearly outlined standards across age

ranges and content areas for the field of computer science, and train teachers to integrate

computational thinking activities and computer science lessons to teach specific

curricular content is underway; however, several barriers exist that have slowed the

integration of computer science into general education. These include the perceived

difficulty of computer science principles by general education teachers, lack of school

resources (space, finances), and administrative focus on improving core academic

performance. Occupational competencies related to computer science and information

technology skills are in high demand, and therefore, it is more important than ever to

provide high quality empirical evidence to understand whether providing students with

the opportunity to develop computational thinking competencies may impact other areas

of their academic performance, so that administrators and teachers alike may be more

likely to adopt CT activities into their curricular content.

www.manaraa.com

 55

CHAPTER 3

METHODS

The current study aimed to shed light on the relationship between computer

programming activities, problem solving ability, academic achievement, and creative

thinking in ten to fourteen-year-old children participating over summer educational

programming at a public charter school in an urban school in the mid-Atlantic region of

the United States. Youths participated in Scratch-based computer programming activities

following a semi-structured set of lessons, led by an instructor with experience in

education and computer science. The first two days of the study consisted of individual

and group assessments for all participants in the study. Then, two sequential classes of

participants (henceforth referred to as experimental and control groups) were provided

instruction, with a second round of assessments occurring after the experimental group

ended Scratch lessons; this portion of the study constituted the controlled trial phase.

Finally, a third round of assessments occurred after the control group had completed

Scratch lessons.

Participants

 The partnering school was selected to participate in the study primarily because

the school offered a summer-long day-camp program open to all students, but secondarily

because the student demographic represents a traditionally underserved population.

Youth attending the summer programming were provided with an explanation of the

study’s procedures, and the potential risks and benefits to their participation individually

by the primary student investigator. Families of youth who assented to participating in the

study then met individually with me to go into more detail about the study’s details over

www.manaraa.com

 56

the course of a routine summer enrollment school meeting. Parents who were unavailable

to meet in person were sent home consent forms with contact information for myself and

the principal investigator. There were two youth who did not assent to participate, and

two who began the study but changed their mind about participating after beginning

instruction for one or two days. Upon completion of the study, all participant

assessments, as well as any other identifying documents collected throughout the study,

were de-identified and participants were assigned a random two-digit number.

In total, there were 24 youth who participated in any aspect of the study; however,

some youth’s attendance was such that they only participated in the initial assessment

portion of the study (n = 6), or for less than or equal to half of the instructional time (n =

5). Five boys and seven girls comprised the experimental group, while eight boys and

four girls comprised the control group. Youth ranged from ten to fourteen years-old, with

an average age of 11.5 years-old (11.63 in the experimental group, and 11.38 in the

control group). All participants had just completed their respective grades, and there were

five fourth graders, two fifth graders, four sixth graders, and one seventh grader in the

experimental group; while there were four fourth graders, five fifth graders, two sixth

graders, and one seventh grader in the control group. There were four participants who

received special education services in the area of learning support, with two of these

youth in both the experimental and control groups.

The lead computer science educator was recruited through email postings across a

variety of listservs related to computer science education. She received a Bachelor’s of

Business Administration in Management Information Systems and Accounting from a

State University in 2012, and completed a Full Stack Web Developer Online Program in

www.manaraa.com

 57

2017, prior to the study’s start date. She had extensive field experience working in

healthcare system implementation, developing training materials and lesson facilitation,

and building basic websites and apps. In addition, she had previously used the Scratch

programming environment while serving in a volunteer capacity with middle school

students for Girls Who Code, and Tech Girlz –two non-profit organizations dedicated to

STEM education for young women in the area. Prior to the study’s start date, I met with

her to discuss her experiences and interest in the study, and after she agreed to participate

in the study, provided her with the tentative lesson plan and schedule for curriculum

selected for the study. She independently reviewed and completed the lessons to

familiarize herself with all the nuances and details, and participated in a follow-up

troubleshooting meeting to resolve any anticipated difficulties before classes began. She

acted as lead instructor throughout the duration of the study, while I supported her with

behavior management in the classroom, and lesson planning. The partnering school also

officially brought her on as a summer programming educator to provide financial

reimbursement for her time.

Graduate research assistants studying the field of School Psychology were

recruited via electronic postings at Temple University in the winter and spring of 2017 to

conduct individually-administered standardized assessments of problem solving abilities

and math achievement with participating youth. A total of five research assistants worked

as field assessors throughout the duration of the study. Group training sessions were held

in the spring of 2017 to introduce assistants to each of the selected measures of the study,

and also to detail alterations to standardized administration for one of the assessments.

Follow-up observed testing sessions were held with each research assistant, with myself

www.manaraa.com

 58

as a mock examinee making both common and unusual responses in order to ensure

assistants were prepared for the diversity of potential participant responses. A standard

checklist provided by the publisher of the Woodcock Johnson Tests of Cognitive

Abilities, Fourth Edition, was used to ensure proper administration of this assessment.

Assessors were provided with a physical and digital copy of changes to standardized

administration of this assessment to further reduce the likelihood of administration error.

Each assistant reached administrative proficiency for reliable and valid administration for

the assessments selected for the study.

Another group of three research assistants (two graduate students and one

undergraduate student) were recruited in the winter of 2018 to assist with assessing

creative thinking and creative problem solving through electronic postings on various

listservs for graduate students in the College of Education at Temple University and the

Computer Science Teachers Association, Philadelphia Chapter. The responding research

assistants shared a commonality in that they had prerequisite interest and knowledge of

creativity research and cognitive assessment in a collegiate setting, thus satisfying criteria

to be considered quasi-experts (Kaufman & Baer, 2012). One of the research assistants

was an advanced doctoral candidate at the College of Education at Temple University

and a high school CS teacher. Another assistant was a Masters level graduate student

with knowledge and experience in the field of assessment of learning, also from the

College of Education at Temple University. The undergraduate research assistant was a

senior studying Psychology at a nearby university who was recommended as a qualified

candidate to act as a research assistant by his neuropsychology course instructor.

www.manaraa.com

 59

The recruitment email message contained brief details about the study and the role

of the assistants, in addition to a digital copy of Amabile’s (1982) article describing the

theoretical framework and process of the assessment method. A conference call was

subsequently held to provide an overview of the study, review the assessment method and

procedures, and ensure each research assistant was provided with uniform training.

Research assistants (raters) received and returned their assessment packets in-person or

through the mail, with individual participant responses arranged in a random order but

grouped according to the assessments corresponding time point, i.e., pre/post. Two of the

research assistants provided ratings on the standard, sequential presentation of the items

(1, 2, 3, 4), while one of the research assistants provided ratings on an altered

presentation of items (3, 4, 1, 2). This decision was made to control for any order effects.

Packets also included pre-populated rating forms, and an additional hard copy of the

assessment procedures. Assistants were instructed not to communicate with one another

about their ratings.

Design

 Due to the scheduling conflicts that would have arisen by randomizing children

enrolled in the participating school’s program purely for study purposes, participants

were divided into an experimental and control group to accommodate previously planned

camp activities and trips. A total of 12 children were assigned to both the experimental

and control groups; however, some children in the control group either chose not to

continue their participation in the computer class (n = 2), or did not attend any of the

instructional days for unknown reasons (n =3). Assessment data for these youth were,

therefore, incomplete. Youth in the experimental group completed the computer coding

www.manaraa.com

 60

class first, while those in the control group attended regularly scheduled daily activities

along with other summer camp children not enrolled in the study. Youth in the control

group then completed the computer coding class while those in the experimental group

attended regularly scheduled daily activities along with other summer camp attendees not

enrolled in the study. The decision to incorporate both experimental and control groups in

the computer class over the course of the study was made in order to comply with ethical

principles, and general best practice of equity in research; moreover, the potential

educational benefit of participation in the computer course was the same across both

experimental and control groups throughout the course of the study. The planned delayed

treatement control trial experimental design was intended to allow for strong conclusions

to be made regarding the efficacy of the computer class on cognitive and academic

variables (Chambless & Hollon, 1998). The study also incorporated a pretest-posttest

design element such that children in both the experimental and control groups completed

all measures before beginning the computer class and after completing the class.

Figure 3.1 graphically depicts the design of the study with the associated

measures that were administered along the various time points in the study. In order to

preserve the psychometric properties of the standardized measures selected for the study

(WJ-IV CF and KTEA-3 MCA), it was only possible to administer these measures at two

time points; consequently, the control trial component of the study took place between

time points one (T1) and two (T2), and also included the CPS assessments. In order to

measure changes in participant knowledge of computer programming concepts, each

group was assessed for programming conceptual knowledge prior to beginning the class

(T1), and again upon completion (T2 for experimental group and T3 for control group).

www.manaraa.com

 61

The decision to administer both the CPS and PCK group assessments to youth in both

groups at the start date of the study was made to increase the internal validity of the study

by preventing the transmission of assessment content between children in experimental

and control conditions during regularly scheduled summer programming. The assessment

of programming conceptual knowledge, thus, represents a more traditional pretest-

posttest experimental design, specifically measuring participant changes in programming

conceptual knowledge after participating in computer programming activities, but not

compared to a control group.

www.manaraa.com

 62

Note: WJ-IV CF1 & 2: Woodcock Johnson Tests of Cognitive Abilities, Fourth Edition -
Concept Formation, pre and post-test; KTEA A &B: Kaufman Tests of Educational
Achievement, Third Edition - Mathematical Concepts and Applications, Forms A and B;
PCK1 & 2: Assessment of Programming Conceptual Knowledge, pre and post-test; CPS1 &

2: Assessment of Creative Problem Solving, Pre and Post-test; Type T: Type-T
Personality Questionnaire; CUQ: Computer Usage Questionnaire.

Figure 3.1. Experimental Design and Measures

Measures

A variety of measures were used to assess problem solving ability, academic

achievement, programming conceptual knowledge, prior programming experience and

computer usage, and creative problem solving. In addition to direct individual and group

assessments, the partnering school provided each child’s most recent Pennsylvania

System of School Assessment (PSSA) scores in English and Language arts, and Math.

Scaled PSSA scores for each area were collected and used in data analysis.

www.manaraa.com

 63

To gauge participant levels of problem solving ability, an adapted version of the

Concept Formation subtest of the Woodcock-Johnson Tests of Cognitive Abilities,

Fourth Edition (WJ-IV) (Schrank, McGrew, & Mather, 2014) was developed to

accommodate a two time-point administration that did not consist of identical items. The

WJ-IV Concept Formation test is a measure of inductive reasoning, i.e., the ability to

observe a phenomenon and discover the underlying principles or rules that determine its

behaviors (Flanagan, Ortiz, & Alfonso, 2013). In the WJ-IV Concept Formation subtest,

examinees are presented with a complete stimulus set, and he or she must derive the rule

for each item; therefore, in addition to measuring principles of inductive logic, the WJ-IV

Concept Formation subtest also measures the mental flexibility required when an

individual shifts mental set, which is an aspect of executive processing (Mather &

Wendling, 2014). An expert in the field of cognitive assessment was consulted to split the

subtest items into two separate, and psychometrically similar measures, thereby reducing

the chance of practice effects associated with completing identical measures within the

short test-retest time interval. Each participant completed all sample items on each testing

occasion to maintain the integrity of the test; however, the test at time point one was

composed of half of the item pairs appearing on a single page of the stimulus book, while

the test at time point two was composed of the remaining half of item pairs.

The intuitive link between applied mathematical problem solving and computer

programming activities justified incorporating an assessment of mathematics into the

current study. Although lessons within the selected curriculum did not explicitly

incorporate math instruction into daily activities, in order to create functional computer

programs, knowledge of math concepts and their applications was necessary; therefore,

www.manaraa.com

 64

the Math Concepts and Applications (MCA) subtest from the Kaufman Tests of

Educational Achievement, Third Edition (KTEA-3) (Kaufman & Kaufman, 2014) was

selected as a way to gauge changes in mathematical thinking skills. Not only is this test a

standardized measure of mathematical conceptual knowledge, but the KTEA-3 also

offers two forms (A and B) to allow for subtests to be administered in close temporal

proximity to one another while maintaining technical adequacy and eliminating practice

effects associated with completing identical assessments in close test-retest intervals.

Form A was administered to all participants in attendance before the study began, and

form B was administered to all participants in attendance at time point two. The KTEA-3:

MCA subtest has a split-half internal consistency reliability coefficient of .96 for fifth

grade students, and is highly correlated with (r = .85) with the Mathematical Problem

Solving subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III);

therefore, it was considered a valid and reliable measure of academic achievement in the

domain of applied mathematical problem solving.

To measure creative thinking abilities, the consensual assessment technique

(CAT) (Amabile, 1982), using three raters trained on the method and considered to be

quasi-experts in the field of learning, computer science, or educational psychology, was

utilized. The CAT method of assessing creativity is considered by leading creativity

researchers to be the most reliable and valid manner in which creativity can be measured

(Baer & McKool, 2009). The CAT involves rating participant-created products and

artifacts using a scale across the two major components considered essential in evaluating

creativity, i.e., originality and usefulness (Mayer, 1999). An assessment of creative

problem solving (CPS) was developed using items that were similar to a study conducted

www.manaraa.com

 65

by South Korean researchers, Kim, Chung, and Yu (2013) who developed and validated

the “Synthetic Creative Problem Solving Test” using the CAT to evaluate dimensions of

creativity with over 100 youth who participated in Scratch programming activities. The

primary measure of creative problem solving in the current study consisted of a pre and

post-test with four prompts nearly identical to those used in Kim, Chung, and Yu’s

(2013) study; however, the language of four item prompts composing each test was

modified to reflect cultural and geographical differences between South Korean and

American students (see Appendices A and B for complete pre and post-tests).

Two brief questionnaires were completed by all participants in the study to

investigate the relationship between personality differences, and previous programming

experience or computer usage, and assessment variables. Participants completed a brief,

eight-item questionnaire designed to measure the degree to which they endorsed taking

risks and seeking out new or exciting experiences, referred to as the Type-T (Thrill)

dimension of personality (Farley, 1986). A recent review of the Type T literature is found

in Sarshar (2017), which explored the personality characteristic’s relationship to mindset,

flourishing, psychological entitlement, creativity, and stress in a sample of

undergraduates. The questionnaire presented statements like, “I enjoy taking chances,”

and, “I like to make up my own mind.” Participants then circled, “Never,” “A little bit,”

or, “A lot” (Farley, 2017, personal communication). See Appendix C for the full Type-T

questionnaire. The Computer Usage Questionnaire (CUQ) asked participants about their

prior participation in computer programming activities, and their usage of computing

devices both at home and in school. Both questionnaires were completed in small groups

at the beginning of the study. These data were used to provide information on how

www.manaraa.com

 66

children with different personality characteristics or varying levels of experience using

computers and using code may or may not be more likely to benefit from computer

programming activities.

Finally, youth in both the experimental and control groups were given a test of

computer programming conceptual knowledge (PCK) at the beginning of the study

(PCK1), and again after each group had completed the computer coding course (PCK2).

For the PCK1, participants completed the most recently available 2016 USA Bebras

Challenge Computational Thinking Assessment, obtained through coordination with the

USA Branch of the Bebras Organization (“Bebras Computing Challenge,” 2018). The

pre-test (PCK1) was selected for its attempt to assess CT skills with tasks that do not

require any prior knowledge of computer programming, combined with its use in prior

research (Straw, Bamford, & Styles, 2017). See Dagiené and Stupurienė (2016) for a

review of studies involving the Bebras Challenge. Items on the PCK1 were adapted from

the 2016 UK Bebras Challenge Computational Thinking Assessment to reflect language

differences between UK English and American English, while retaining the same content

and tasks (“UK Bebras Computational Thinking Challenge,” 2016). See Appendix D for

questions and answers for the item set of the USA 2016 Bebras Challenge used in the

current study, and for a description of the theoretical and practical considerations in the

early development of the Bebras contest, see Dagienė (2006).

The assessment is an online, 45-minute limit, 15-question test assessing various

areas of CT as conceptualized and described by Selby, Dorling, and Woollard (2014),

i.e., algorithmic thinking, evaluation, decomposition, and generalization, and each item

requires tapping in to up to three of these CT areas. Each item was developed through a

www.manaraa.com

 67

workgroup of CS researchers and educators that meets on an annual basis, and is

presented in a multiple-choice format that presents a child-friendly, illustrated scenario

designed to 1) represent key computational concepts, 2) be easily understandable, 3)

solved within a three-minute timeframe, 4) able to be presented on a single page, 5)

solvable at a computer without the use of other software of paper and pencil, 6)

independent from specific systems, and 7) be interesting and/or funny (“Bebras,” 2018).

Item sets are grouped for specific age-bands (Pre-Primary – ages 5-8, Primary – ages 8-

10, Benjamins – ages 11-12, Cadets – ages 13-14, Juniors – ages 15-16, and Seniors –

ages 17-18), and each item set contains five items across three levels of difficulty. Items

within each age band are adjusted annually to contain specific tasks that reflect the

expected range of performance across age groups based on observed patterns of

performance from the previous year. Participants in the current study, regardless of their

chronological age, were administered the Benjamins group item set.

Participants were assigned anonymous “skeleton” accounts to access assessment

content through the web, and were presented items in a random order until the time

expired, or all questions had been answered. Participants were allowed to ask questions

while they took the assessment, and both myself and the lead course instructor provided

task clarification when needed. Attempts were made to limit communication among

nearby children; however, the configuration of the classroom inevitably allowed for some

peer communication during the assessment. See Table 3.1 for a list of the items

administered to participants in the current study, and their associated CS domains, CT

areas, and key word tags describing specific concepts embedded in the task. The table is

organized according to item difficulty level.

www.manaraa.com

 68

Table 3.1

2016 USA Bebras Challenge (PCK1) Assessment Composition

Item Name Difficulty CT Skills / CS Domain / (keyword tags)

Mazes
A

Algorithmic Thinking / AP

Soccer Game

A
 Algorithmic Thinking, Evaluation / AP / (IF

condition)

Bottles
A

Abstraction, Evaluation / DSR

Tube System

A
 Algorithmic Thinking, Decomposition,

Generalization / AP

Party Guests

A
 Algorithmic Thinking, Decomposition / AP /

(Dependency, Graph)

Secret Recipe
B

Algorithmic Thinking, Decomposition / DSR

Car Trip

B

Algorithmic Thinking, Decomposition / AP

Robot Exit

B

Algorithmic Thinking / AP

Party Banner

B

Abstraction, Evaluation, Generalization / AP

Beaver Code

B Algorithmic Thinking, Decomposition,
Generalization / DSR

Blossom

C

Evaluation, Generalization / AP

Magic Potions

C

Algorithmic Thinking, Evaluation / AP

Hurlers Shake
Hands

C

Algorithmic Thinking / CPH / (Parallel processing)

Primary Health
Care

 C
Abstraction, Evaluation / Data

Paint it Black

C
 Abstraction, Algorithmic Thinking, Evaluation / AP /

(Boolean Algebra)

Note: In CS Domain column, AP = Algorithms and Programming; DSR = Data, Data
Structures and Representations; CPH = Computer Processes and Hardware.

www.manaraa.com

 69

A post-test of programming conceptual knowledge (PCK2) was developed largely

based on the items from the Coding Quiz used in Straw, Bamford, and Styles (2017), and

through collaboration with the lead course instructor. It was administered as a multiple-

choice, paper-pencil assessment consisting of seven items that focused on the seven core

computational concepts as outlined by Brennan and Resnick (2012), i.e., sequences,

loops, events, parallelism, conditionals, operators, and data (see Appendix E for the

complete PCK2 assessment). This assessment was selected and developed due in part to

its practical feasibility with respect to the total amount of time children spent completing

various assessments, while also in part due to the efficiency with which responses could

be quantified. Participants were presented with a prompt describing a sample Scratch

project with six, lettered choices containing different samples of Scratch code, and one, “I

don’t know,” option. Item content also reflected specific instructional activities and

language taught and used during the course, and in this way served to function as an

assessment of the degree to which participants learned course content. Table 3.2

summarizes the item task, CT areas, and curricular content for the PCK2.

This type of assessment technique for knowledge of programming concepts has

notable advantages to the more prevalent artifact-based assessment technique (e.g.,

Denner, Werner, & Ortiz, 2012). First, knowledge of computational concepts is directly

tested as opposed to indirectly assumed through analysis of artifacts, e.g., percentages of

types of code included in projects; and second, this assessment technique focuses on a

process-in-action rather than a process-via-memory inherent in interview, or self-report

assessment techniques (Brennan & Resnick, 2012; Werner, Denner, & Campe, 2014).

www.manaraa.com

 70

Table 3.2

Programming Conceptual Knowledge Post-test (PCK2) Composition

Item Task Description CT Areas Curricular Content

1

Move a cat along a
path to a donut.

Sequences

 Understanding of
rotation, direction, and
orientation

2

 Make a teacher say
something by
inputting the correct
value.

Conditionals
Operators
Data

Understanding of >
symbol, "ask" and "say"
blocks

3
 Make a windmill

rotate forever.
 Loops

Sequences

"Forever" block

4

Move a parrot when
a key is pressed.

Events

Understanding of x and
y as axes

5

Make a dinosaur say
a times table.

 Sequences
Loops
Operators
Data

Understanding of > and
* symbols, Variables

6

Make a person
dance and speak
forever.

 Parallelism
Sequences
Loops
Events

 "Define," "Broadcast,"
and "Receive" blocks

7

Set a timer to a
song.

 Events
Sequences
Loops
Operators

Timer as a variable,
"Repeat Until" block

Participants in both experimental and control groups spent the first two days of

the school’s summer camp educational program completing individual and group

assessments, and setting up online accounts necessary for using the selected curriculum

and programming environment. Upon completion of lessons and activities of the selected

curriculum, participants then completed individual and group post-tests associated with

www.manaraa.com

 71

their respective group condition and time point. Individually administered assessments

(i.e., the WJ-IV CF1 & 2, and the KTEA-3 MCAA & B) took approximately 15 minutes to

administer per child. All other assessments were administered in small groups with the

PCK1 taking on average approximately 30 minutes for participants to complete; the PCK2

approximately 15 minutes; and the CPS1 & 2 assessments taking approximately 15 minutes

each for participants to complete. The Type T personality questionnaire, and the

Computer Usage Questionnaire took approximately 15 minutes per participant to

complete altogether. The approximate amount of time for all assessments included in the

study was approximately 150 minutes per child.

Materials

The curriculum selected was developed by the ScratchEd team at the Harvard

Graduate School of Education, and is entitled “Creative Computing” (Brennan, Balch, &

Chung, 2014). The Creative Computing (CC) curriculum is composed of seven units with

44 lessons and activities range from 19.5 to 30.25 hours of time in total. The sequence of

lessons and units introduces users to the Scratch programming environment and explores

the various functions and tools that make up Scratch. Lessons include non-computerized

exercises designed to encourage children to think about the intricacies of designing a

computer program to perform a desired operation or function, as well as open-ended

project-based activities, e.g., personalized story-based animations, individually created

games, etc., that allow children to personalize their experience in the Scratch

programming environment. Participants were provided with individual, hard copies of

workbooks to work through lessons, take notes, and write their ideas and reflections

instead of using individual design journals, as is suggested in the CC curriculum. Brief

www.manaraa.com

 72

group discussions based on the prior day’s activities, occurring at the beginning of each

instructional day allowed for peer feedback and collaboration, which has been previously

linked to greater understanding of programming concepts (Werner, Denner, & Campe,

2014). When youth finished lessons early, they were encouraged to complete a series of

mini-lessons called “Scratch Cards” developed by the ScratchEd team. These Scratch

Cards served as mini-lessons designed to teach specific functions of various codes across

the various code categories, and were grouped as themed sets, e.g., Animate Your Name,

Create a Story, Make Music, etc.

Each lesson was introduced in a group setting, where approaches to activities

embedded within each lesson were discussed together, and then demonstrated by the

instructor on a projector. Youth suggested codes to input, while the instructor talked

through how the computer interpreted the code. When the proposed solution did not

produce the desired outcome, the instructor used a think-aloud procedure to model the

problem solving process until the outcome was achieved. Youth then individually worked

to create Scratch projects while I and the lead instructor circulated through the room to

work individually with participants to help troubleshoot malfunctions in their projects,

and also to help them understand how to use various codes, upload media, and navigate

the Scratch interface. The lead computer instructor and I met briefly after each class

period to discuss our observations and experiences as it related to how the youth were

responding to the instructional activities. We then communicated electronically to adjust

the following day’s lesson plans by developing sample projects illustrating key concepts

using the interests expressed in reflection discussions in an attempt to boost interest and

www.manaraa.com

 73

motivation. A complete list of lessons completed for each group across instructional days

is displayed below in Table 3.3.

Table 3.3

 Day-by-day Lessons for Experimental and Control Groups

Experimental Group Control Group

Day 1
Introducing Scratch
Scratch Account
Scratch Surprise

Day 1

Introducing Scratch
Scratch Account
Scratch Surprise

Day 2 Programmed to Dance
10 Blocks

Day 2 Programmed to Dance

Debug It!

Day 3
Debug It!
About Me
Intro to Build-a-Band

Day 3 10 Blocks

About Me

Day 4
Orange Square, Purple Circle
Performing Scripts
Build-a-Band

Day 4 Performing Scripts

Build-a-Band

Day 5 It's Alive!
Debug It!

Day 5 Music Video

Day 6 Music Video

Day 6
Characters
Conversations
Scenes

Day 7 Characters
Conversations

Day 7

Debug It!
Dream Game List
Starter Games

Day 8 Debug It!
Scenes

Day 8

Score
Extensions
Interactions

Day 9 Debug It!
Extensions/Remixing

 Day 10 Robotic Kit Activity

 The total duration of each class was an attempt to reflect international guidelines

on the amount of CS instruction required for a high school level certification in computer

science and information technology instruction set forth by the Department of Education

in the UK, and also adopted by South Korea (Yoo et al., 2006). Each class session lasted

www.manaraa.com

 74

approximately three hours per day. The experimental group participated in Scratch

activities over eight class periods while the control group participated in Scratch activities

for ten class periods in total, amounting to 24 hours of experience with Scratch for the

experimental group, and 30 hours of experience with Scratch for the control group. This

difference in the number of experiential hours was a result of losing instructional days

due to excessive heat school closures, and a scheduling miscommunication.

A positive reinforcement system using salvaged silicon microchips as tokens was

established prior to the start date of the study in a preemptive attempt to promote positive

behavior among youth in each group. Participants could earn a chip for 1) helping

another classmate solve a problem, 2) solving a problem and explaining to a teacher how

you did it, or 3) completing a Scratch Card set. The partnering school obtained individual

robotic kits at the end of the study for youth who participated in the course and earned a

pre-determined amount of computer chip points.

Some degree of participant mortality and attrition was expected due to the

fundamental unpredictability of research with human subjects, combined with the highly

variable nature of families’ schedules during the summer months. In the experimental

group, the average attendance was only 65% of instructional days, resulting in an average

of 15.75 hours of experience with Scratch and the CC curriculum activities. Only two

children attended 100% of instructional days for the experimental group. In the control

group, participants on average attended 72.5% of instructional days, resulting in an

average of 21.75 hours of experience with Scratch and the CC curriculum activities. Six

children in the control group attended 100% of instructional days. On every assessment

included in the study, there were fewer participants in the control group that completed a

www.manaraa.com

 75

given measure. While seven participants in the experimental group completed 100% of

assessments, only four did so in the control group. The main reason for differences in

experimental and control group attendance was that four youth in the control group were

present only for the initial portion of the camp and, therefore, only participated in

assessments at time point one. Consequently, these children did not receive any

instruction or have any experience in the CC curriculum, and could neither complete the

PCK2, nor were they present to complete remaining assessments.

Data Collection

For the WJ-IV CF1 & 2 assessments, the obtained split-test raw scores were

converted to total raw scores by calculating the expected total raw score for the full,

standard version of the WJ-IV CF using the ratio of split-test raw scores to the maximum

amount possible for each time point. The total raw score for each time point was then

converted to W scores using standard scoring protocol and software. Performance was

reported as W scores, which are a special transformation of the Rasch ability scale

(Rasch, 1960; Wright & Stone, 1979), because of the short test-retest time interval of the

study, and the mathematical properties of W scores that make them more sensitive to

change than the traditionally reported standard scores. The W scale for each subtest of the

WJ-IV is centered on a value of 500, which is set to approximate the average

performance of 10-year-old individuals (Mather & Wendling, 2014). Youth ranged from

468 to 546 in their W scores across WJ-IV CF measures at both time points, and there

was evidence for good reliability between the pre and post-tests, as performance on the

WJ-IV CF1 was highly correlated with performance on the WJ-IV CF2 (rs = .751, p =

.001). Across both experimental and control groups, there were five participants who

www.manaraa.com

 76

took the pre-test, but did not take the post-test, and there were two participants who only

took the post-test. Three participants completed the pre-test at time point two.

The KTEA-3 MCA Forms A and B were administered and scored according to

standardized procedures, and reported as standard scores rather than W scores, as these

were not able to be generated for this assessment. Youth ranged from 63 to 123 in their

standard scores across both forms A and B of the KTEA-3 MCA, and as with the WJ-IV

CF pre and post-test, there was good evidence for reliability on both forms A and B of the

KTEA-3 MCA, as performance on form A was highly correlated with performance on

form B (rs = .928, p = .000). Across experimental and control groups, there were five

participants who completed form A but not form B; three participants who completed

form B but not form A; and one participant who did not complete either forms A or B.

Ratings for participant responses on each item of both the CPS1 and CPS2 were

provided by three research assistants on a 1-5 Likert type scale (1 = Very Low, 2 = Low,

3 = Average, 4 = High, 5 = Very High) across two dimensions of creativity, i.e.,

originality and usefulness. Ratings were averaged across raters for each dimension, and

then dimensional scores were averaged to create a total score. When one or more raters

indicated that the youth may have misunderstood or misinterpreted items, those items

were not included in either the overall score, or their overall dimensional scores. Across

both experimental and control groups, there were seven participants who completed the

CPS1 and not the CPS2; two participants who completed the CPS2 and not the CPS1; and

two participants who completed neither the CPS1 nor the CPS2. Dimensional and total

scores on the CPS1 ranged from 2.00 to 4.08, and from 1.33 to 3.83 on the CPS2. There

www.manaraa.com

 77

was evidence for good reliability for ratings of responses on the CPS1 and CPS2, as the

total scores for each assessment were highly correlated (rs = .712, p = .009).

To examine whether raters’ interpretation of participant responses tended to agree

with one another, interrater reliability was calculated across items and dimensions for

both the CPS1 and CPS2 using a two-way mixed effects model to test absolute agreement

among raters (k = 3). Intraclass correlation coefficients (ICC), their 95% confidence

intervals, and significance levels are presented in Tables 3.4 and 3.5 below. Overall, there

was little evidence to support agreement among raters, as most ICCs were below the 0.5

level, and were non-significant. On seven out of twenty four reported dimensional and

total scores across items and assessments, ICCs were negative in value, suggesting that

raters actually disagreed in their ratings of creativity across dimensions and items. There

were only four significant ICCs across dimensional and total scores for each item on both

the CPS1 and CPS2. ICCs that were significant at the p < .05 level ranged from .465 to

.659 in value and included the originality dimensional score from item one from the CPS1

and item two from the CPS2, as well as the usefulness dimensional and total score for

item four from the CPS2. The low number of significant ICCs indicates that raters did not

view responses to CPS item prompts as they relate to the constructs of originality and

usefulness in a similar way, which may have implications for future studies using the

CAT method to assess creativity.

www.manaraa.com

 78

Table 3.4

 Creative Problem Solving Pre-test (CPS1) Interrater Reliability Statistics

 	
 Intraclass
Correlation

	
 95% Confidence Interval 	

Sig. 	
 	
 Lower Bound 	
 Upper Bound 	

Item 1

Originality 	
 .659 	
 -.002 	
 .915 	
 .029*
Usefulness 	
 -.907 	
 -2.290 	
 .404 	
 .946

Total 	
 -.376 	
 -2.665 	
 .638 	
 .686

Item 2

Originality 	
 -.441 	
 -1.774 	
 .383 	
 .818
Usefulness 	
 -.752 	
 -3.161 	
 .330 	
 .877

Total 	
 -.445 	
 -1.956 	
 .404 	
 .803

Item 3

Originality 	
 .476 	
 -.234 	
 .809 	
 .071
Usefulness 	
 .322 	
 -.357 	
 .730 	
 .146

Total 	
 .478 	
 -.242 	
 .810 	
 .072

Item 4

Originality 	
 .027 	
 -1.026 	
 .589 	
 .455
Usefulness 	
 .351 	
 -.221 	
 .709 	
 .095

Total 	
 .258 	
 -.440 	
 .674 	
 .194

Table 3.5

Creative Problem Solving Post-test (CPS2) Interrater Reliability Statistics

 	
 Intraclass
Correlation

	
 95% Confidence Interval 	

Sig. 	
 	
 Lower Bound 	
 Upper Bound 	

Item 1

Originality 	
 -.058 	
 -1.052 	
 .767 	
 .509
Usefulness 	
 .046 	
 -3.015 	
 .889 	
 .439

Total 	
 .173 	
 -1.717 	
 .865 	
 .363

Item 2

Originality 	
 .578 	
 .019 	
 .860 	
 .022*
Usefulness 	
 -2.143 	
 -10.973 	
 .124 	
 .963

Total 	
 .026 	
 -1.197 	
 .672 	
 .454

Item 3

Originality 	
 -.109 	
 -1.361 	
 .700 	
 .551
Usefulness 	
 .494 	
 -.196 	
 .871 	
 .064

Total 	
 .457 	
 -.278 	
 .862 	
 .093

Item 4

Originality 	
 .300 	
 -.246 	
 .736 	
 .125
Usefulness 	
 .538 	
 -.035 	
 .849 	
 .007*

Total 	
 .495 	
 -.068 	
 .829 	
 .008*

www.manaraa.com

 79

The variability in ICCs was in part due to the variable number of cases included

in the analysis across items, as there were a number of participants who were thought to

have misinterpreted or misunderstood items across items on each assessment;

subsequently, ratings for these items were not reported or included in calculating

interrater reliability. Table 3.6 displays the number of raters who indicated

misinterpretation or misunderstanding across items of the CPS1 and CPS2. In general,

there was little consensus among raters as it pertained to perceived misinterpretation of

item prompts, as evidenced by the trend on both the CPS1 and CPS2 for the majority of

misinterpretation indications coming from only one rater.

Table 3.6

Perceived Misinterpretations Across Items on CPS1 and CPS2

 	
 	
 Number of raters indicating misinterpretation

 	
 	
 One 	
 Two 	
 Three Total

CPS1
(n = 20)	

Item 1 	
 4 	
 5 	
 1 10
Item 2 	
 2 	
 0 	
 0 2
Item 3 	
 11 	
 0 	
 0 11
Item 4 	
 0 	
 0 	
 0 0

Subtotal 	
 17 	
 5 	
 1 23
	
 	
 	
 	
 	
 	
 	
 	
 	
 	

CPS2
(n = 15)	

Item 1 	
 6 	
 3 	
 0 9
Item 2 	
 3 	
 0 	
 0 3
Item 3 	
 5 	
 2 	
 0 7
Item 4 	
 2 	
 1 	
 0 3

Subtotal 	
 16 	
 6 	
 0 22

	
 Grand Total 	
 33 	
 11 	
 1 45

On the PCK1, performance was reported according to the scoring procedures of

the 2016 USA Bebras Challenge. Each item’s level of difficulty was weighted differently,

such that correct answers on items categorized as level A difficulty were awarded six

www.manaraa.com

 80

points; nine points for level B difficulty; and 12 points for level C difficulty. Incorrect

answers resulted in a two, three, or four-point deduction for difficulty levels A, B, and C

respectively, and all additions or deductions started from a base value of 45 points. The

minimum score possible was, therefore, zero points as the assessment included five items

across each level of difficulty. Total scores for the PCK1 ranged from 0 to 108, and on

average, participants answered 3.3 items correctly, scoring an average of 38.2 points.

For the PCK2 the total number of items answered correctly was reported, and

there was a maximum of seven points possible. Scores ranged from 0 to 4 points, with an

average of 1.8 points across both experimental and control groups. Across both

experimental and control groups, there were six participants who completed the PCK1

and not the PCK2; one participant who completed the PCK2 and not the PCK1; and four

participants who completed neither the PCK1 nor the PCK2.

Participant responses on the Type T questionnaire were assigned a numeric value

and summed to create a total score. When participants circled, “Never,” this was assigned

a value of zero; when they circled “A Little Bit,” this was assigned a value of one; and

when they circled, “A Lot,” this was assigned a value of two. The maximum possible

score was thus 16, and scores ranged from 7 to 16 with an average of 10.7. Across both

experimental and control groups, there were three participants who did not complete the

Type T questionnaire, and they were all in the control group.

Responses on the Computer Usage questionnaire (CUQ) were quantified

according to item content, while written responses were qualitatively analyzed. Twenty-

one participants took the survey, and all three children who did not complete it were in

the control group. Sixty-two percent of youth (n =13) said they did not have a desktop at

www.manaraa.com

 81

home, but had at least one laptop at home (six children with one, and seven children with

two). Over half (56%) of participants in the control group reported having a desktop

computer at home, while only one quarter of participants in the experimental group

reported having a desktop computer at home. Eighty-six percent of youth had at least one

tablet at home, with an average of two tablets, and ranging up to five tablets. Ninety

percent (n = 19) of youth reported having internet access at home, with twelve usually

using a phone to access internet; four usually using another device (console or TV); three

usually using laptop; and one usually using tablet. Tables 3.7 and 3.8 display the rates of

computer activities in the home and school environments for youth in both experimental

and control groups. Participants reporting “other” activities wrote in responses that could

generally be categorized into one of the response choices.

Table 3.7

Youth Computer Activities at Home

 Experimental (n = 12) Control (n = 9)
Playing games 100% 58%
Doing homework 67% 42%
Writing 8% 25%
Watching Videos 83% 50%
Reading news stories or articles 25% 17%
Going on social media 58% 42%
Other 42% 8%

www.manaraa.com

 82

Table 3.8

Youth Computer Activities at School

 Experimental (n = 12) Control (n = 9)
Playing games 83% 58%
Doing work 92% 58%
Learning programs or software 58% 58%
Making presentations 33% 25%
Making animations 17% 17%
Making games 8% 17%
Writing computer code 67% 17%
Other 33% 0%

Youth reported on average that they used a smart phone two to three times per

day; a tablet one to two times per week; a laptop computer one to two times per week; a

desktop computer one to two times per month; “other” computing devices two to three

times per day (most commonly a console or TV). Participants in the experimental group

reported using their smart phones more often than participants in the control group, but

there were no differences in frequency of use of other computing devices between

groups. Thirty-eight percent (n = 8) of youth said they had used computer programming

or coding to solve a problem or create something in the past. Twenty-four percent (n = 5)

of youth said that learning about how computers help to solve problems was not

important, or were unsure if it was important. Written responses for interest in using

computers to help solve problems focused around using computers to do work, or a vague

sense of helping in some way. Forty-three percent (n = 9) of youth said they had

participated in a coding camp or club before, with no differences across experimental and

control groups, and forty-seven percent (n = 10) said they had done programming or

coding on computers before, with several youth reporting that they had used Code.org or

www.manaraa.com

 83

Scratch in the past. Participants in the experimental group reported a higher rate (63%) of

previous coding or programming experience than the control group (44%).

There were a number of correlations among responses on items of the Computer

Usage Questionnaire (CUQ) and assessment variables. First, youth who reported having

access to the internet tended to do better on the PCK1 (rs = .518, p = .023). Second,

having a desktop computer in the home was correlated with performance on the WJ-IV

CF1 (rs = .462, p = .040), and frequency of desktop use was also positively correlated

with performance on the WJ-IV CF1 (rs = .453, p = .045). Third, frequency of laptop use

was positively correlated with performance on the KTEA-3 MCAB (rs = .544, p = .036).

Lastly, reported tablet usage was positively correlated with several assessment variables,

indicating that youth who reported using tablets more often tended to do better on various

assessments included in the study. Tablet use was correlated with performance on the

WJ-IV CF1 (rs = .657, p = .002), the KTEA-3 MCAA (rs = .671, p =.002) and KTEA-3

MCAB (rs = .552, p =.033), as well as the CPS1 (rs = .483, p = .042) and CPS2 (rs = .574,

p = .032). Participants who indicated that they had participated in a coding camp or club,

or had previously engaged in computer programming or coding activities were not

associated with significantly better scores across assessments, and in fact, the only

significant correlation with any assessment variable (PCK2) and prior experience with

computer programming or coding was negative in value (rs = -.658, p = .028).

The number of participants in the experimental and control groups who completed

assessments, their mean scores, and standard deviations are displayed in Table 3.9.

www.manaraa.com

 84

Table 3.9

Descriptive Statistics Across Assessments by Group

 	
 Experimental
(n = 12)

	
 Control
(n= 12)

	
 Total
(n = 24)

 	
 N Mean SD 	
 N Mean SD 	
 N Mean SD

WJ-IV CF1
	
 12 490 13.9 	
 10 497 22.9 	
 22 493 18.3

WJ-IV CF2
	
 10 490 11.5 	
 8 490 10.9 	
 18 490 10.9

KTEA-3 MCAA
	
 12 87 17.0 	
 7 92 10.6 	
 19 89 14.8

KTEA-3 MCAB
	
 9 88 15.6 	
 8 90 18.0 	
 17 89 16.3

CPS1 	
 11 3.03 0.44 	
 9 2.98 0.45 	
 20 3.00 0.43

CPS2
	
 9 2.66 0.55 	
 6 2.59 0.35 	
 15 2.63 0.47

PCK1
	
 11 36.7 28.7 	
 8 40.3 19.0 	
 19 38.2 24.5

PCK2 	
 7 1.71 1.1 	
 6 1.83 1.3 	
 13 1.77 1.2

Type T 	
 12 9.9 2.2 	
 9 11.8 2.2 	
 21 10.7 2.3

Relationship Among Variables

 There were a number of variables that showed significant correlations with one

another among participants in both the experimental and control groups, and as a whole.

These relationships were produced using Spearman’s rho (rs) with cases excluded

pairwise at both the group and overall sample levels, as the low overall N in the study

necessitated the use of nonparametric statistics. Demographic variables (age, sex, PSSA

scores, special education status, Type-T personality characteristic), classroom variables

(attendance, instructional hours, total chip count), and assessment variables (WJ-IV CF1 &

2, KTEA-3 MCAA & B, CPS1 & 2, and PCK1 & 2) were entered into the analyses. Correlation

statistics are primarily reported in terms of the overall sample, as not only were there

www.manaraa.com

 85

fewer participants in the control group on average who completed various assessments,

and thus, included in their respective group analyses across those variables (n = 10 for the

experimental group and n = 7.67 for the control group), but also because the group

correlations generally followed the same trends as the overall sample correlations. There

were, however, several interesting differences in group correlations, and they are

discussed first, followed by presentation of the relationship among variables in the

overall sample. Full correlation matrices for all variables entered into the analyses by

overall sample can be found in Appendix F, and by groups in Appendices G and H.

The first difference between correlations in the experimental and control groups

was that there were overall less significant correlations in total for the control group, with

only nine significant correlations emerging in the analysis of 16 variables, while there

were 27 significant correlations in the experimental group. Second, special education

status was negatively correlated with the Type T personality characteristic in the

experimental group (rs = -.596, p = .041), but positively correlated with the Type T

personality characteristic in the control group (rs = .681, p = .043). While these

correlations are notable, they require some qualification, as there were only four

participants in total who were classified as receiving special education across both

groups. Therefore, upon closer inspection, these correlations suggest that the two children

in the experimental group who received special education in school tended to report

higher levels of thrill seeking behavior, while the two children receiving special

education in the control group tended to report lower levels of thrill seeking behavior.

Lastly, while participants in the control group who obtained higher scores on a pre-test of

CT skills (PCK1) were associated with earning more computer chips during the CC

www.manaraa.com

 86

course (rs = .800, p = .031), participants in the experimental group whose academic

achievement, as measured by PSSA ELA and PSSA Math scores, were associated with

earning more computer chips. These correlations may partly be explained by the

additional effort made by instructors to reinforce youth in the experimental group who

had difficulty with programming activities, perhaps due to a relationship between

academic achievement and success with CC activities; whereas youth in the control group

who possessed higher CT skills prior to beginning CC lessons and activities were able to

experience more success, and subsequently earned more computer chips.

Analyzed as a whole, and independent of the CC course instruction, being a male

was moderately correlated to higher performance on the PCK1 (rs = .485, p = .022). Girls

tended to perform worse than boys on PSSA ELA (rs = -.405, p = .050). Youth in higher

grade levels tended to perform better on the CPS2 assessment (rs = .680, p = .005), but

there was no relation to grade level and the CPS1 assessment (rs = .252, p = .298).

 There were significant positive correlations among scores on both the Math and

ELA PSSAs, the KTEA MCA Forms A and B, and CPS assessments, and they are

displayed in Table 3.10. The correlations between the PSSA ELA and KTEA-3 MCAA

and KTEA-3 MCAB were lower in value than the correlations between the PSSA Math

and KTEA-3 MCAA and KTEA-3 MCAB, and this suggests good concurrent validity for

the measure of mathematic ability on both the Math PSSA and KTEA-3 MCA

assessments. Participant PSSA ELA and Math scores were also positively and moderately

correlated to CPS1 and CPS2 scores, with correlation coefficients ranging from .488 to

.544.

www.manaraa.com

 87

Table 3.10

Correlations among PSSA, KTEA-3 MCA, and CPS scores

 1 2 3 4 5 6
1. PSSA ELA ¾
2. PSSA Math .533** ¾
3. KTEA-3 MCAA .462* .786** ¾
4. KTEA-3 MCAB .607** .831** .928** ¾
5. CPS1 .488* .526* .799** .788** ¾
6. CPS2 .544* .518* .655* .681** .712** ¾

Note: *p < .05; **p < .01

While the correlations among standardized measures of academic achievement

were expected given their ubiquitous usage in the field of education, and known strong

psychometric properties, the strong correlation between the CPS1 and CPS2 (r2 = .712, p

= .009) was particularly notable, as these instruments were developed specifically for this

study. This finding suggests good reliability of the CPS assessment in the context of the

current study.

The total number of token computer chips earned by each participant across the

duration of the study was summed and used for all analyses. Overall, the experimental

group earned more chips on average than control group (100 vs. 24), but there were fewer

participants in the control group who attended instructional days regularly. Taking this

into account by multiplying the percentage of days attended by each participant with their

total chip counts, the trend remained the same. Participants in the experimental group

earned an average of 7.4 chips by attendance, while those in the control group earned an

average of 2.7 chips by attendance. Unsurprisingly, youth who attended more frequently

earned more chips, and there was a strong correlation between the attendance and the

total number of chips earned throughout the course of the study (rs = .745, p = .000).

www.manaraa.com

 88

Cumulative chip count was also negatively correlated with scores on the Type T

personality questionnaire (rs = -.513, p = .035), suggesting that youth who reported more

risk-taking behavior tended to earn less chips. This was the only significant correlation

with any demographic or assessment variable and the Type T personality questionnaire.

One interpretation of this correlation may be that the Type T personality

characteristic could be associated with more emphasis on nonconformity, suggesting that

youth with a higher risk-taking or thrill-seeking personality profile would be less likely to

subscribe to a positive behavior reinforcement system. There were, however, some

problems with the chip system itself, as earning a computer chip was not entirely

dependent on the group rules laid out in the beginning of the course. On the one hand,

while there was a group of youth who genuinely earned chips for completing Scratch

cards, helping others to resolve an issue in Scratch, or showing an instructor their

completed work; there was, on the other hand, another group of youth who seemed to

become disinterested with lessons and the Scratch programming environment as they

found the activities somewhat frustrating, and subsequently did not earn token computer

chips. These participants who expressed more frustration and reservation in completing

lessons and projects ended up earning chips more easily as instructors felt the need to

increase the frequency of reinforcement by reducing the criteria needed to earn chips on

an individual basis. Viewing the total chip count with this observation in mind, another

interpretation of the negative correlation with Type T questionnaire scores may be that

children who obtained higher scores on the Type T personality questionnaire earned less

computer chips because there was not enough thrill or excitement in the computer

programming activities comprising the CC curriculum.

www.manaraa.com

 89

 There were several significant correlations between the PCK1 and PCK2, and

other assessments. First, performance on the PCK1 assessment was positively correlated

with their performance on the both the WJ-IV CF1 (rs = .534, p = .022), and WJ-IV CF2

(rs = .559, p = .024). Similarly, performance on the KTEA-3 MCAA (rs = .578, p = .015)

and KTEA-3 MCAB (rs = .812, p = .000) was also correlated with their performance on

the PCK1 assessment. These correlations suggest that inductive reasoning, and knowledge

of mathematical concepts is associated with successfully solving tasks from the Bebras

Challenge CT assessment. This makes intuitive sense, as the tasks on the PCK1, WJ-IV

CF, and KTEA-3 MCA assessments involved recognizing an underlying rule or pattern,

and applying mathematical knowledge.

On standardized norm-referenced assessments included in the study, there were

also several correlations that arose. First, performance on the WJ-IV CF1 was positively

correlated with ratings on the CPS1 (rs = .510, p = .026), but not significantly with the

CPS2. The WJ-IV CF2 was not correlated with either the CPS1 (rs = .119, p = .672) or the

CPS2 (rs = .195, p = .504). There appears to mixed evidence for a consistent link between

problem solving as measured by the WJ-IV Concept Formation subtest, and ratings of

creativity as measured by the CPS pre and post-tests. Finally, participants who obtained

higher scores on the KTEA-3 MCA Forms A and B tended to obtain higher ratings on

both the CPS1 and CPS2 assessments, with correlation coefficients ranging from .681 to

.799. These results aligned with the aforementioned correlations with participant PSSA

performance and the CPS ratings, suggesting that participants who had greater

mathematical conceptual knowledge generally were thought to respond in a more original

and useful way to CPS item prompts.

www.manaraa.com

 90

CHAPTER 4

RESULTS

The current study aimed to identify the degree to which youth who participated in

computer programming activities in the Scratch environment in a summer camp program

1) demonstrated measurable changes in problem solving ability and creative thinking, and

2) learned and applied computational thinking skills. The overall low N in each group

required the use of nonparametric statistics for analyses; specifically, the Mann-Whitney

U Test to explore group differences across the WJ-IV CF, KTEA-3 MCA, and CPS pre

and post-tests; and Spearman’s rho (rs) to examine the relationship between demographic

and assessment variables.

RQ1: Problem Solving and Creative Thinking

Results from independent samples Mann-Whitney U tests showed that the mean

ranks of all assessment variables included in the analysis (WJ-IV CF1 & 2, KTEA MCAA &

B, and CPS1 & 2) did not differ significantly across experimental and control groups,

supporting retention of the null hypothesis. Group differences across assessments were

analyzed in addition to change scores across each assessment. Results are displayed along

with the N for each analysis, the mean rank, Mann-Whitney U value, p-value, and effect

size when appropriate in Tables 4.1 and 4.2 below.

www.manaraa.com

 91

Table 4.1

Mann-Whitney U Test Statistics Across Assessments and Group

Experimental Control Mann-

Whitney
U

 Sig.
(1-tailed) N Mean Rank N Mean Rank

WJ-IV CF1 12 10.88 10 12.25 52.5 .318

WJ-IV CF2 10 8.85 8 10.31 33.5 .292

KTEA MCAA 12 9.17 7 11.43 32.0 .210

KTEA MCAB 9 9.00 8 9.00 36.0 .509

CPS1 11 9.82 8 10.25 42.0 .444

CPS2 9 8.22 6 7.67 25.0 .420

Table 4.2

Mann-Whitney U Test Statistics for Change in Assessment Scores

 N	
 	
 Mann-Whitney U 	
 Sig. (1-tailed)	
 h2

 WJ-IV CF D 16 27.0 .792	
 .007

 KTEA MCA D 14 22.0 1.00	
 .000

 CPS D 12 7.50 .154	
 .191

To further illustrate the lack of difference between groups across CPS

assessments, Figure 4.1 displays the mean ratings of participants in both the experimental

and control groups across dimensional and total scores for both the CPS1 and CPS2.

Participants tended to provide responses to the CPS2 that were rated as less creative in

both the dimensions of usefulness and originality.

www.manaraa.com

 92

Figure 4.1. Mean ratings on the CPS assessments

RQ2: Computational Thinking Skills

The conceptual framework underlying computational thinking skills assessed on

both the PCK1 and PCK2 differed, so there was no direct method to test whether

participants learned specific CT skills measured on the PCK1 from results on the PCK2;

rather, to investigate whether participants who took both the PCK1 and PCK2 (n = 12)

made any meaningful gains in CT skills after participating in the computer course, PCK1

scores were assigned a rank value, and their ranked performance was then compared to

their total scores on the PCK2. Figure 4.2 displays the ranked order of participant’s

performance on the PCK1 and their total PCK2 scores to graphically illustrate that there

was no clear trend in whether participants who did or did not perform relatively well on

the PCK1 made gains or losses on the PCK2. A higher ranking denotes a lower score such

that the “1” on the x-axis was the highest score, and the “12” was the lowest score.

1

2

3

4

5

CPS1 CPS2 CPS1 CPS2 CPS1 CPS2

Originality Usefulness Total

Experimental Control

www.manaraa.com

 93

Figure 4.2. Ranked Order of PCK1 Scores by PCK2 Scores Across Participants

Total W scores on the PCK1 were not correlated with total scores obtained on

PCK2 (rs = .289, p = .455), but there was some support for the difficulty level

categorization of the PCK1 assessment, as the total number of correct answers across

participants who completed the PCK1 assessment (n = 19) on items in difficulty level A

was 24/95, 27/95 for level B; and only 12/95 for level C. In other words, participants

tended to answer fewer of the most difficult items than the least difficult items on the

PCK1. Figures 4.3 and 4.4 display the number of participants across both experimental

and control groups that answered items of the PCK1 and PCK2 correctly.

0

1

2

3

4

5

12 11 10 9 8 7 6 5 4 3 2 1

PC
K

2
To

ta
l S

co
re

Ranked Order of PCK1 W Scores

www.manaraa.com

 94

Figure 4.3. Number of Correct Responses Across PCK1 Items

Figure 4.4. Number of Correct Responses Across PCK2 Items

0
1
2
3
4
5
6
7
8
9

10

M
az

es

So
cc

er
 G

am
e

B
ot

tle
s

Tu
be

 S
ys

te
m

Pa
rty

 G
ue

st
s

Se
cr

et
 R

ec
ip

e

C
ar

 T
rip

R
ob

ot
 E

xi
t

Pa
rty

 B
an

ne
r

B
ea

ve
r C

od
e

B
lo

ss
om

M
ag

ic
 P

ot
io

ns

H
ur

le
rs

 S
ha

ke
 H

an
ds

Pr
im

ar
y

H
ea

lth
 C

ar
e

Pa
in

t i
t B

la
ck

Level A Difficulty Level B Difficulty Level C Difficulty

0

1

2

3

4

5

www.manaraa.com

 95

To understand whether participants who answered certain questions correctly on

the PCK1 assessment tended to obtain correct responses on specific items from the PCK2

assessment, items on each PCK assessment were correlated with one another. Using this

method, correlations could be indicative of whether participants retained any prior-

existing CT skills required to correctly answer items on the PCK1, or whether items on

the PCK1 assessed similar CT skills on PCK2. Items that showed a significant correlation

using Spearman’s rho (rs) were then compared to one another across the CT skills and

key programming concepts, as well as specific curricular content embedded within each

item. There were four significant correlations found among items on the PCK1 and PCK2

for which the details are presented below.

There were two identical, significant correlations with the PCK1 Soccer Game

item, and questions one (Move Cat to Donut) and five (Dinosaur Multiplication) from the

PCK2 (rs = .625, p = .03). The CT skills and key programming concepts assessed in the

Soccer Game item from the PCK1 were algorithmic thinking, evaluation, and “IF”

condition, while the CT skills and curricular content assessed in question one from the

PCK2 were sequences, and understanding of rotation, direction, and spatial orientation.

The CT areas and curricular content assessed in question five of the PCK2 were

sequences, loops, operators, data, and understanding of the “>” and “*” symbols, as well

as understanding the concept of a variable.

There was a perfect correlation between the Party Guests item of the PCK1 and

question two (Guess Number) on the PCK2 (rs = 1.00). The reason for this perfect

correlation was that there was only one participant who responded correctly on question

two of the PCK2, and this participant also responded correctly to the Party Guests item

www.manaraa.com

 96

on the PCK1. There was also one participant who answered the Party Guests item of the

PCK1 correctly, but did not complete the PCK2 assessment. The CT skills and key

programming concepts assessed in the Party Guests item of the PCK1 were algorithmic

thinking, decomposition, dependency, and graphs. The CT skills and curricular content

assessed in question two of the PCK2 were conditionals, operators, data, and

understanding of the “>” symbol, as well as understanding of the “ask” and “say” Scratch

blocks.

Finally, there was a significant correlation between the Blossom item of the PCK1

and question four (Press Key to Move Parrot) of the PCK2 (rs = .632, p = .027). The CT

skills assessed in the Blossom item of the PCK1 were evaluation and generalization,

while the CT skills assessed in question four of the PCK2 were events, and understanding

of the x and y axes.

www.manaraa.com

 97

CHAPTER 5

DISCUSSION

In lieu of the number of factors that limit the internal and external validity of the

results, there were several notable findings that emerged, and may be important for future

researchers and educators interested in the study of how and what ten to fourteen-year-

old children learn through computer programming activities, or for those interested in

implementing the Creative Computing Curriculum. A discussion of important findings

and their relation to future research or instructional endeavors is presented first, followed

by a discussion of the limitations of the study.

Notable Findings

No group differences across assessment variables

The results of Mann-Whitney U tests to answer the primary research question

showed that there were no statistically significant differences between experimental and

control groups in measures of problem solving (the WJ-IV CF and KTEA-3 MCA

assessments) and creativity after participating in computer programming activities. In

other words, ten to fourteen-year-old children who were provided with direct instruction,

and who explored the Scratch programming environment through the Creative

Computing (CC) Curriculum in a roughly two-week summer computer course, did not

perform any better or worse on measures of problem solving skills and creative thinking

ability than children who did not participate in similar activities during the same time

period. The lack of any significant changes in problem solving or creative thinking skills

between groups may be due in part to the short timespan over which youth engaged in

computer programming activities, and also because youth explored and created with

www.manaraa.com

 98

Scratch at an introductory, or surface level, as opposed to a more in-depth and complex

level. Previous studies showing gains in problem solving or creative thinking skills often

involved larger treatment dosages over longer timespans, allowing youth to spend more

time planning, developing, testing, and personalizing their projects. In the current study,

children largely followed steps laid out in the CC Curriculum, and rarely reached a level

of competency to branch off into their own original ideas. Furthermore, when they

encountered malfunctions in their projects, they tended to quickly ask for help, or

resorted to engaging in other, non-Scratch activities, rather than effectively engaging in a

problem solving process.

Another factor influencing the lack of any detectable learning gains on selected

measures relates to the decision to exclude design journals recommended in the CC

curriculum for the current study. As a result, many children either relied heavily on

following the step-by-step procedures to complete CC lessons and activities, or strayed

entirely away from the designated lessons, choosing to explore the Scratch environment

in a somewhat indiscriminate fashion. Had there been more time devoted to emphasizing

the importance of the planning and design phase in for individual projects, participants

may have more effectively been able to conceptualize the steps and associated

computational processes involved in realizing their desired outcomes. A theme

discovered early on in the experimental group was that while participants expressed a

desired goal for their Scratch project, they had trouble delineating the steps necessary in

order to put together functional Scratch programs to reach their goals. One-on-one

assistance provided by instructors often included a breakdown of the larger goal into

smaller steps, and then translating those steps into Scratch code. Sometimes, this

www.manaraa.com

 99

individual assistance included math calculations, diagrams to explain the Cartesian

coordinate system, or explanations of the function of specific code blocks in simplified

language. Whether participants would have been able to experience more success in

Scratch with greater attention to planning and design, and thus move more quickly

through lessons with less frustration is not entirely clear; nonetheless, dedicating more

time and energy in the design and planning phase, especially on more open-ended

projects, may have allowed participants to better internalize key computational concepts

and processes, and should be considered in future research.

Lastly, the quality and pace of instruction between experimental and control

groups differed, as feedback from the experimental group was taken into consideration

for instruction with the control group, such that unsavory lessons and activities were

removed from planned instruction for the control group, and more time was allowed for

lessons wherein the experimental group reported high interest and satisfaction. As a

result, participants in the control group were able to move more quickly through the CC

curriculum, and engage in more complex lessons and activities; but, because the control

trial phase of the study was completed after the experimental group had completed the

class, results related to the primary research question of whether children who participate

in computer programming activities demonstrated changes in problem solving skills and

creative thinking were, thus, not affected. Rather, participants in the control group could

have been more likely to learn more computational thinking skills through more refined

and higher quality instruction and experience with Scratch.

www.manaraa.com

 100

Difficulty of Teaching the Creative Computing Curriculum in an Informal Learning

Environment

Due to the time of year in which the study took place, i.e., during the school’s

summer break, many participants seemed to take on a vacation-mindset, such that they

became frustrated with having to complete the assessments, and participate in a semi-

structured course despite having assented to the study prior to the beginning of summer

program. This led to participants hurrying to finish assessments and CC lessons and

activities, consequently affecting the validity of the results. The degree to which this

summer-break mindset affected the children seemed to be most apparent during the

beginning of the study when the daily routine of the summer programming was more

novel. The token computer chip, positive reinforcement system was a preemptive attempt

to boost motivation, and add extra incentive for the children to participate in computer

programming activities. Additionally, the partnering school’s purchase of individual

robotic kits for which participants earning a pre-determined number of chips could

exchange was an attempt to further bolster motivation. These steps, however, did not

seem to be entirely effective, particularly in the experimental group, where instructors

were required to spend more time and energy responding to challenging attitude and

behavior rather than focusing on individual and group instruction. After each

instructional day, instructors collaborated to introduce lessons in more relevant ways,

incorporating things that the youth expressed liking about the previous day’s lesson, and

connecting CC lessons to the broader context of computer science and its application to

real-world problems. Although participants appeared to take interest in these

www.manaraa.com

 101

supplemental and adjusted activities, they continued to express some frustration and

discontent with CC curriculum lessons and activities.

While the CC curriculum was developed to garner high interest and engagement

among school age youth, there were a few lessons that did not go over well with

participants in the current study, especially in the experimental group. For example,

participants in the experimental group reported disliking the “10 Blocks” and “Orange

Square, Purple Circle” lessons, and these lessons were subsequently removed or

deemphasized from the planned sequence of lessons for the control group. The children

seemed to become disinterested in working within the confines of these lessons,

appearing to take more interest in creating their own projects with personalized media

rather than being limited by rules constricting their use of various types of code or

seemingly mundane shapes and objects. Future researchers or educators looking to use

the CC Curriculum should keep these observations in mind when planning lessons and

activities.

In a further attempt to boost interest and engagement with CC curriculum

activities, instructors taught participants how to upload media into Scratch, calculate

beats-per-minute for their music video projects, and brainstorm ideas for stories and

games. These instructional components were not explicitly part of the CC curriculum, but

were well received by the majority of children, and should be considered for educators

using the CC curriculum as a framework for teaching CT skills through Scratch in future

endeavors. In this way, the CC Curriculum can serve as a launching point, or guide for

instructors to use, but in order to effectively engage youth in Scratch programming

activities, a degree of improvisation and flexibility is required.

www.manaraa.com

 102

The informal learning environment in which the current study took place, and

other similar settings such as after-school enrichment programs, present challenges that

should be taken into consideration for engaging youth more deeply with computer

programming activities. Youth seem to approach this type of setting differently from the

manner in which they might approach similar tasks in a more formal classroom learning

environment. The children may have been more likely to engage with curricular material

had they attended more regularly, and taken the lessons and tasks more seriously in a

more formal, compulsory classroom setting. While some participants seemed to engage

more effectively with the Scratch programming environment, and genuinely enjoy

aspects of the lessons, others took a more relaxed and nonchalant approach to the

material. Additionally, the amount of assessment time seemed to exceed developmental

norms for this age group, and participants became frustrated with having to complete the

battery of assessments selected for the study. Future studies should keep these

observations in mind when selecting assessments, and planning for activities and lessons

in this type of learning environment.

The variability of engagement with the CC Curriculum was qualitatively noted in

the current study, but not quantitatively analyzed. Future researchers should attempt to

understand the process in which children work in the Scratch environment more closely

than in the current study. Efforts by some researchers to extract Scratch project data files

describing the code content and actions in children’s Scratch projects across specified

time intervals has been one area in which this process-oriented approach as opposed to a

more product-oriented approach is already being implemented (e.g., Fields, Quirke,

Amely, & Maughan, 2016; Fields, Quirke, Horton, Maughan, Velasquez, Amely, &

www.manaraa.com

 103

Pantic, 2016; Pantic, Fields, & Quirke, 2016). In the current study, it would have been

helpful to more systematically and quantitatively categorize participants into levels of

Scratch engagement, and one way this could have been done would have been to

introduce a structured observation system that either a researcher or analytic digital tool

could use to gather information about what children are actually doing on their computers

at specified time intervals by taking “snapshots” of their screens either digitally or in-

person.

It may also be helpful for educators and researchers interested in using the CC

curriculum or other Scratch-based lessons and activities to get a sense of learners’

knowledge as it relates to general computer literacy prior to beginning instruction. Using

a pre-test of computer literacy could be helpful to determine how much time should be

spent teaching youth how to download, convert, and save media files from the web, and

locate them to upload into the Scratch environment, or understand nuances of both the

computer and Scratch interfaces, i.e., keyboard shortcuts, right-clicking, etc. While the

Scratch environment does offer a library of pre-loaded media to use, participants in the

current study sometimes expressed a desire to incorporate their own media, and when

they were taught how to do so (usually with one-on-one instruction), they generally

became more interested in the project they were creating. This seemed to result in a more

meaningful experience with Scratch, and it is possible that by tapping into the personal

appeals of learners, that lessons and activities may become meaningful and engaging for

youth. Consequently, youth may be better able to learn CT skills when it is not viewed as

just another academic exercise. Of course, understanding what is meaningful to varying

populations of children will undoubtedly differ across ages, settings, and regions;

www.manaraa.com

 104

nonetheless, it is an important consideration to make when implementing the CC

Curriculum or similar guides.

Similarly, it became evident that many children did not understand some

fundamental mathematical concepts required to effectively create projects with their

desired functions and outcomes. For example, many participants needed direct instruction

on the Cartesian coordinate system, understanding of angles and rotation, recognizing

inequalities, and conceptualizing variables. By obtaining a gauge of children’s knowledge

of these key math concepts necessary for many aspects of Scratch programming prior to

instruction, a more targeted approach to teaching necessary mathematics skills could take

place, and result in less frustration and more success in Scratch. While the KTEA-3 MCA

was used to measure changes in learning in the current study, future studies should first

analyze the requisite skills needed for activities, and then pre-test children on these skills

in hopes of identifying gaps to be filled before or during instruction.

Difficulty Assessing Computational Thinking

Results from the PCK assessments to answer the secondary research question

were difficult to analyze and interpret given their differing conceptual frameworks, as

well as the overlapping of CT skills with specific curricular content within items.

Furthermore, the lack of correlation between the PCK pre and post-tests may be

indicative of misalignment of skills assessed with each measure, but could also be related

to the fundamental conceptual differences of each assessment. It was difficult to know

whether participants who answered certain questions on the PCK1 and PCK2 assessments

correctly were employing the same CT skills, or whether there was an alternative reason

that participants tended to answer these questions correctly. For example, the Soccer

www.manaraa.com

 105

Game item from the PCK1 was correlated with questions one (Move Cat to Donut) and

five (Dinosaur Multiplication) on the PCK2. Perhaps participants used similar algorithmic

thinking and evaluative CT skills in answering the Soccer Game question from the PCK1

and questions one and five of the PCK2, but there was no way of knowing besides

analyzing the nature of each task on a granular level post hoc. On the surface, however,

there seemed to be few similarities between these questions on both PCK assessments.

Without direct observation or interviews with the children, understanding how they

managed to think through problems was not possible. A more interactive, computer-

based assessment capturing participants’ processes-in-action through analysis of their

actions as they completed items either through direct observations and interviews, or

through JSON file analysis would have been a more valid measure of CT skills, and

easier to interpret. Future studies looking to understand how and what children learn as it

relates to CT skills and areas should consider this aspect when selecting and designing

assessments.

The PCK1 assessment (the 2016 USA Bebras Challenge) was selected as a pre-

test of CT skills and knowledge due to its attempt to assess CT skills without relying on

prerequisite syntactical knowledge of specific programming languages, but there have

been critiques of its validity in assessing CT skills. For example, Izu et al. (2017) notes

that researchers have found a correlation between the length of Bebras Challenge’s task

and perceived difficulty in elementary students. Similarly, the linguistic demands across

items of the Bebras Challenge are thought to be a major barrier to obtaining correct

responses (Yagunova, Podznyakov, Ryzhova, Razumovskaia, & Korovkin, 2015). With

this notion in mind, one reason why participants may not have correctly answered items

www.manaraa.com

 106

on the PCK1 could have been that they were not able to understand or comprehend the

premise of the question because there were too many factors to retain within their

working memory, or the language was too complex. Without a direct measure of working

memory or reading comprehension, however, this supposition was unable to be tested in

the current study, but may be helpful in future endeavors. Similarly, for the PCK2,

participants may have been unable to attend to all the details embedded within each item,

overlooked key details, or misunderstood mathematical symbols of the item content and

response choices. Also, unlike some items of the PCK1, the PCK2 did not allow for

immediate feedback, testing, and debugging –a key CT process –due to the fact that it

was administered as a paper-pencil test for practical purposes.

The measurement of CT skills on the PCK2 may also have been confounded by

items inclusion of specific curricular content using various Scratch codes and sequences,

as opposed to the more theoretical and abstract tasks comprising items of the PCK1

assessment. Perhaps the PCK1 would have been a more direct measure of CT skills

learned after participating in computer programming activities; however, with this type of

design, practice effects would have confounded an identical post-test. Furthermore,

within this hypothetical paradigm, learning of specific curricular content could not have

been assessed. Relatedly, the items comprising the PCK2 were either independently

developed, or borrowed from the “Coding Quiz” utilized in Straw, Bamford, and Styles

(2017), as opposed to validated and normed on a large sample of children. This made

generalizing performance on the PCK2 beyond the context of the current study

impossible.

www.manaraa.com

 107

A think-aloud procedure, or post-assessment interview with participants may have

been able to shed more light onto the process in which they answered each question, and

thus, allowed for comparisons to be made between participants’ actual approach to

working through the problems, and the authors of the Bebras Challenge suggested

approach to working through the problems. This methodology, however, is not without

its practical limitations, as transcribing, coding, and qualitatively analyzing participant

descriptions of their thought processes is rather labor intensive. Similarly, on the PCK2, a

think-aloud procedure or post-assessment interview may have resulted in greater insight

into the strategies children used to answer each question. This method, however, is

limited by the amount of time required to collect and analyze narratives, as well as

children’s own ability to describe their thought processes given their variable language

skills

Limitations

The results of the current investigation should be interpreted cautiously as there

were a variety of factors that impacted the planned research design, assessment

procedures, and classroom instruction. The first and foremost limiting factor was the

overall low sample size, as well as the varying number of assessments completed by each

participant in both experimental and control groups. Consequently, there were many gaps

in pre/post assessments across time-points and participants. Furthermore, there were four

participants in the control group who only attended for the initial assessment phase of the

study, and two participants in the experimental group who also only attended for the

initial assessment phase of the study. Relatedly, attendance was inconsistent, meaning

that the amount of instruction and experiential time with the CC curriculum and

www.manaraa.com

 108

associated lessons and activities varied widely across participants within and between

groups. The generalization of the findings is, therefore, minimal, and in some ways

questionable even within the context of the study.

Another way in which the study may be limited relates to group differences.

Although participants demonstrated similar variance in obtained scores across measures,

there were two notable differences between participants in the experimental and control

groups. First, about twice the rate of participants in the control group reported having a

desktop computer at home. Because lessons and activities in the CC curriculum were

delivered and explored through desktop computers, youth with desktops at home may

have been in a position of more familiarity with the desktop computer interface, resulting

in more efficient engagement with the course content than those who did not have

desktop computers at home. Second, participants in the experimental group reported a

higher rate of previous experience with computer coding or programming than in the

control group. Although there were no positive correlations related to previous

experience with coding or computer programming and assessment variables either by

group or by overall sample, it may have impacted motivation in the experimental group,

as the Scratch environment may have been too familiar and subsequently uninteresting to

them; thus, lowering their motivation to complete lessons. Alternatively, prior coding or

computer programming experience was not quantified or explored beyond a simple “yes”

or “no” response on the CUQ questionnaire. Youth may have fundamentally

misunderstood what “coding” or “computer programming” activities entailed, or only

participated in brief introductory exercises such as Code.org’s popular “Hour of Code”

program.

www.manaraa.com

 109

There were also some logistical concerns related to curriculum implementation

and assessments selected and developed for the study that also limit the internal validity

of the study. First, the amount of instructional time differed for experimental and control

groups, as there was a scheduling miscommunication that resulted in the loss of nearly

one week of instructional time for the experimental group, and two weather-related

school closures that prevented participants in the experimental group from gaining

additional experience with CC lessons and activities. Due to this scheduling

miscommunication, participants in the experimental group completed time-point two

assessments one week after engaging in CC lessons and activities. With this one-week

delay from completing CC lessons and activities to completing the PCK2 assessment,

participants in the experimental group may not have remembered the functions of various

code blocks, and thus performed more poorly than if they had completed the assessment

closer to the time when they finished CC lessons and activities, as the control group did.

Regardless of the differences in the total number of instructional and experiential

hours between the control and experimental groups, the total duration of the course (i.e.,

the treatment dosage) may not have been enough to affect statistical or meaningful

change in learning, or the selected assessments may not have been sensitive enough to

change within the relatively short test-retest time interval. Relatedly, instructional hours

were not necessarily instructional, but rather, a mix of independent or guided exploration

in Scratch, supplemented by occasional one-to-one assistance and whole-group

instruction. Some children relied more heavily on the Scratch workbooks than others,

while others preferred to learn how to use the Scratch environment on their own by more

of a trial-and-error, or haphazard style. Still, other children tended to experience

www.manaraa.com

 110

frustration with lessons and activities, and when instructors were not immediately able to

provide assistance, these children often engaged in other computer activities, i.e.,

watching YouTube videos or playing non-Scratch games on the web. The actual amount

of Scratch-engaged time, thus, varied considerably across participants, and there was no

direct way to measure the amount of time each participant spent actually manipulating

code blocks to complete lessons and create projects. In an attempt to reduce non-Scratch

computer activities, the instructors instituted class wide rules aimed at relegating

computer usage to only Scratch based activities with repeated noncompliance resulting in

a locked computer screen; however, these rules were met with great resistance, and were

difficult to enforce without major disruption in classroom activities. Subsequently, for the

sake of the children who were engaging appropriately with the CC lessons and activities,

instructors chose to allow participants to move to non-Scratch activities after completing

one lesson or task. This resulted in some children spending more time in non-Scratch

activities than others.

Similar to the aforementioned possible link between length of PCK1 items, and

perceived difficulty of the item, the items comprising the CPS assessments may have

been written at too high of a level of linguistic and conceptual complexity for participants

to truly grasp the task. This notion was reflected in the large proportion of raters

indicating that they thought a participant had misinterpreted or misunderstood items. The

CPS assessments were developed using Kim, Chung, and Yu’s (2013) synthetic creative

problem solving test, which was a study that included a group of South Korean students

classified as gifted, in addition to those who were not classified as gifted. Although the

language of items comprising both the CPS1 and CPS2 was adjusted to reflect linguistic

www.manaraa.com

 111

and cultural differences, it did not undergo a validation procedure to ensure youth in the

urban mid-Atlantic region of the United States were able to comprehend the prompts.

Furthermore, the lack of agreement, and in fact, evidence for more disagreement

among raters, suggests that raters did not view the originality and usefulness dimensions

of creativity in the same way for the same children. With more qualified raters

undergoing more comprehensive training on the consensual assessment through rating a

variety of mock participant responses designed to represent predetermined degrees of

originality and usefulness, there may have been a higher degree of inter-rater reliability.

Lastly, as it relates to the CPS assessments, although each rater was provided with

participant responses to both CPS assessments in different orders, and one of the three

raters was provided with a reversed presentation of item prompts, the raters’ assessment

packets were organized by CPS1 and CPS2. Therefore, raters may have become fatigued,

or changed their internal criteria of usefulness or originality throughout the course of

seeing participant responses depending on which of the CPS assessments they looked at

first. If all participant responses to each CPS assessment had been shuffled into an

overarching response packet with a random order of CPS1 and CPS2 assessments, any

order effects would have been reduced.

Another limiting factor was the measure chosen to assess mathematical problem

solving ability. The KTEA-3 Math Concepts and Applications subtest focused on the

conceptual component of mathematics rather than calculation skills, or operational

component of mathematics. While it was hypothesized that children engaging in

computer programming activities would acquire more mathematic conceptual knowledge,

success with achieving a desired goal in Scratch was often paired with specific math

www.manaraa.com

 112

calculation skills; therefore, a direct assessment of calculation skills may have been a

more appropriate measure of mathematical thinking as it relates to realizing desired goals

of Scratch projects.

Finally, the WJ-IV CF test was artificially split into a pre and post-test, making an

already difficult test to administer even more difficult. Despite efforts made to ensure that

research assistants demonstrated administrative competency during individual training

sessions, there were still three administration errors on the pre-test (WJ-IV CF1), and on

all three occasions, assessors discontinued the test, mistakenly believing that the youth

had reached the discontinue criterion at one of two decision points. All three errors were

also all for participants who were in the experimental group, resulting in a possible

underestimation of these participants’ ability to apply inductive reasoning to solve

problems; however, these participants’ performance on the WJ-IV CF2, where there were

no administration errors, was less than or equal to their performance on the WJ-IV CF1,

so it may have been possible that they would not have obtained any additional points

even if administration errors had not occurred on the pre-test.

Conclusion

The study of computational thinking and its component cognitive processes is ripe

for expansion and clarification. Ongoing efforts to further decompose and delineate the

development of CT skills will be important to better inform both general and CS specific

educators on developmental expectations across age bands, and incorporate effective

instructional strategies and curricular content. From the results of the current study, it is

clear that informal learning environments such as a summer “camp” setting present a

number of challenges related to attendance and motivation. It was also clear that the

www.manaraa.com

 113

Creative Computing Curriculum activities and lessons needed to be altered to bolster

participants’ engagement with computer programming activities. The lack of differences

between groups across measures related to problem solving and creativity may have been

related to the somewhat low treatment dosage and short time span of the study (roughly

25 hours over two weeks), in addition to the more introductory level of engagement with

curricular material. Lastly, the measurement of CT skills and processes was difficult to

interpret given the selected measures for the study, and future research or instruction

should consider additional efforts to more thoroughly explore what is going on in the

minds of children as the attempt to engage in computational thinking practices through

differing assessment methods.

One area that may be of particular importance for future research and computer

science education is the language used by instructors, and embedded within lessons and

activities to describe CT skills and processes. The way in which instructors describe what

to do as it relates to key CT concepts is important to consider, and has been suggested as

critical for educators to operationally standardize in order for student clarity and

understanding (Waite, Curzon, Marsh, Sentence, & Hadwen-Bennet, 2018). The

language embedded within the categories and names of code in the Scratch programming

environment are designed to be intuitive, but children often needed additional, repeated

explanations of the function of various code blocks throughout lessons and activities of

the CC curriculum. CS educators should be cognizant and conscious of the type of

language they use to describe computer programs, understanding that the

conceptualization of key computational processes is highly dependent on the language of

instruction.

www.manaraa.com

 114

While there is much work to be done, and despite the many challenges and

obstacles to overcome, understanding the implications for incorporating CT activities and

lessons within the general education curriculum will only gain momentum as computer

science grows in its importance for shaping the modern world.

www.manaraa.com

 115

REFERENCES CITED

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55, 832–

835.

Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the Game-Design and

Learning (GDL) after-school program. Computers & Education, 75, 72-81.

Allsop, Y. (2015). A reflective study into children’s cognition when making computer

games. British Journal of Educational Technology. Advance online publication.

http://dx.doi.org/10.1111/bjet.12251

Almeida, L. S., Prieto, L. P., Ferrando, M., Oliveira, E., & Ferrándiz, C. (2008). Torrance

Test of Creative Thinking: The question of its construct validity. Thinking Skills

and Creativity, 3, 53-58.

Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment

technique. Journal of Personality and Social Psychology, 43, 997–1013.

Au, W., & Leung, J. (1991). Problem-solving, instructional-methods and logo

programming. Journal of Educational Computing Research, 7(4), 455-467.

Bebras. (2018). Retrieved from http://bebras.org/?q=goodtask

Bebras Computing Challenge. (2018). Retreived from

http://www.bebraschallenge.org/index.php

Baer, J., & McKool, S. S. (2009). Assessing Creativity Using the Consensual Assessment

Technique. In C. Schreiner, Handbook of assessment technologies, methods, and

applications in higher education. Hershey, Pennsylvania: IGI Global.

www.manaraa.com

 116

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community?

ACM Inroads, 2, 48–54.

Battista, M. T., & Clements, D. H. (1986). The Effects of Logo and CAI problem-solving

Environments on Problem-solving Abilities and Mathematics Achievement.

Computers in Human Behavior, 2(3), 183-193.

Baytak, A. & Land, S. (2011). An investigation of the artifacts and process of

constructing computer games about environmental science in a fifth grade

classroom. Educational Technology Research & Development, 59(6), 765-782.

Bell, T., Andreae, P., & Robins, A. (2012). Computer science in NZ high schools: The

first year of the new standards. In Proceedings of the 43rd ACM technical

symposium on computer science education. Raleigh, NC.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In Annual American Educational

Research Association Meeting, Vancouver, BC, Canada.

Brennan, K. Balch, C., & Chung, M. (2014). Creative Computing: A design-based

introduction to computational thinking. Harvard Graduate School of Education.

Retrieved from: http://scratched.gse.harvard.edu/guide/.

Bruner, J. S. (1960). The Process of Education. Cambridge, MA: Harvard University

Press.

Bryant R. E., Katz R. H., & Lazowska E. D. (2008). Big-Data Computing: Creating

revolutionary breakthroughs in commerce, science, and society: A white paper

www.manaraa.com

 117

prepared for the Computing Community Consortium committee of the Computing

Research Association. http://cra.org/ccc/resources/ccc-led-whitepapers/

Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing

mathematical thinking with scratch an experiment with 6th grade students. Paper

presented at the, 9307 17-27. doi:10.1007/978-3-319-24258-3_2

Caspersen, M. E., & Nowack, P. (2013). Computational thinking and practice: A generic

approach to computing in Danish high schools. In Proceedings of the fifteenth

Australasian computing education conference (Vol. 136, pp. 137–143). Sydney:

Australian Computer Society.

Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science, Technology,

Engineering, Mathematics. Retrieved from Georgetown University Center on

Education and the Workforce http://cew.georgetown.edu/stem.

Castells, M. (1996). The rise of the network society. Cambridge, Mass: Blackwell

Publishers

Chambless, D. L., & Hollon, S. D. (1998). Defining Empirically Supported Therapies.

Journal of Consulting and Clinical Psychology, 66(1), 7-18.

Cho, S., Jang, Y., Jung, T., Lim, H., & Park, I. (2002). Development of creative problem

solving test II (ED.). Seoul: KEDI (in Korean).

Choi, J., An, S., & Lee, Y. (2015). Computing Education in Korea–Current Issues and

Endeavors. ACM Transactions on Computing Education, 15(2), 8:2-8:22.

Clements, D. H. (1986). Effects of logo and CAI environments on cognition and

creativity. Journal of Educational Psychology, 78(4), 309-318. doi:10.1037/0022-

0663.78.4.309

www.manaraa.com

 118

Clements, D. H. (1990). Metacomponential development in a logo programming

environment. Journal of Educational Psychology, 82(1), 141-149.

doi:10.1037/0022-0663.82.1.141

Clements, D., & Nastasi, B. (1999). Metacognition, learning, and educational computer

environments. Information Technology in Childhood Education Annual, (1), 5–

38.

Clements, D. H., & Sarama, J. (1995). Design of a Logo Environment for Elementary

Geometry. Journal of Mathematical Behavior, 14, (4), 381-398.

Code.org (2018). CS Fundamentals Standards Alignment. Retrieved from

https://curriculum.code.org/csf-1718/standards/

Cohen, R. (1987). Implementing Logo in the grade two classroom: Acquisition of Basic

programming concepts. Journal of Computer-Based Instruction, 14(4), 124-132.

College Board. (2015). AP course audit. Retrieved from

https://apcourseaudit.epiconline.org/ledger/search.php

Computer Science Education Act, H. R. 5929, 111th Cong. (2010).

Computer Science Teachers Association, Standards Task Force (2011). Report on the

CSTA K-12 Computer Science Standards. Retrieved from

http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

Computer Science Teachers Association (2017). CSTA K-12 Computer Science

Standards. Revised 2017. Retrieved from http://www.csteachers.org/standards

Computing at Schools Working Group (2012). A curriculum framework for Computer

Science and Information Technology.

www.manaraa.com

 119

Cuban, L. (2001). Oversold and underused: Computers in the classroom. Boston:

Harvard University Press.

Dagienė, V. (2006). Information technology contests – introduction to computer science

in a attractive way. Informatics in Education, 5(1), 37–46.

Dagienė, V., & Stupurienė, G. (2016). Bebras – a Sustainable Community Building

Model for the Concept Based Learning of Informatics and Computational

Thinking. Informatics in Education, 15(1), 25-44.

DeCorte, E. (1992). On the learning and teaching of problem-solving skills in

mathematics and logo programming. Applied Psychology-an International

Review-Psychologie Appliquee-Revue Internationale, 41(4), 317-331.

doi:10.1111/j.1464-0597.1992.tb00709.x

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school

girls: Can they be used to measure understanding of computer science concepts?

Computers and Education, 58(1), 240-249.

diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. The MIT

Press; Cambridge, MA.

Dynarski, M., James-Burdumy, S., Moore, M., Rosenberg, L., Deke, J., & Mansfield, W.

(2004). When School Stay Open Late: The National Evaluation of the 21st Century

Community Learning Centers Program: New Findings. U.S. Department of

Education, National Center for Education Evaluation and Regional Assistance.

Washington, DC: U.S. Government Printing Office.

www.manaraa.com

 120

Emihovich, C., & Miller, G. E. (1988). Effects of Logo and CAI on Black First Graders'

Achievement, Reflectivity, and Self-esteem. The Elementary School

Journal, 88(5), 473-487. doi:10.1086/461551

Farley, F. (1986, May). The Big T in Personality. Psychology Today, 44-52.

Fay, A., & Mayer, R. (1994). Benefits of Teaching Design Skills Before Teaching Logo

Computer-programming - Evidence for Syntax-independent Learning. Journal of

Educational Computing Research, 11(3), 187-210.

Federation of American Scientists. (2006). Harnessing the power of video games for

learning. Summit on Educational Games. Retrieved from

http://informalscience.org/research/ic-000-000-009-

386/Harnessing_the_Power_of_Video_Games_for_Learning.

Fessakis, G., Gouli, E., and Mavroudi, E., (2013). Problem solving by 5-6 years old

kindergarten children in a computer programming environment: A case study.

Computers and Education, 63, 87-97.

Feurzeig, W. (1986). Albegra Slaves and Agents in a Logo-based Mathematics

Curriculum. Instructional Science, 14, 229-254.

Fields, D. A., Quirke, L., Amely, J., & Maughan, J. (2016). Combining Big Data and

Thick Data Analyses for Understanding Youth Learning Trajectories in a Summer

Coding Camp. In Proceedings of the 47th ACM Technical Symposium on

Computing Science Education (SIGSCE ’16) (pp. 150-155). New York, NY:

ACM.

Fields, D., Quirke, L., Horton, T., Maughan, J., Velasquez, X., Amely, J., Pantic, K.

(2016). Working toward Equity in a Constructionist Scratch Camp: Lessons

www.manaraa.com

 121

Learned in Applying a Studio Design Model. In A. Sipitakiat & N.

Tutiyaphuengprasert (Eds.), Proceedings of Constructionism in Action, Bangkok,

Thailand (pp. 291-298).

Flanagan, D. P., Ortiz, S. O., and Alfonso, V. C. (2013). Essentials in Cross-Battery

Assessment.

Flavell, J. H. (1976). Metacognition and cognitive monitoring: A new area of cognitive-

development inquiry. American Psychologist, 34(10), 906-911.

Fleischman, H.L., Hopstock, P.J., Pelczar, M.P., & Shelley, B.E. (2010). Highlights From

PISA 2009: Performance of U.S. 15-YearOld Students in Reading, Mathematics,

and Science Literacy in an International Context (NCES 2011-004). U.S.

Department of Education, National Center for Education Statistics. Washington,

DC: U.S. Government Printing Office.

Gallup (2014). Searching for Computer Science: Access and Barriers in U.S. K-12

Education. Retrieved from http://csedu.gallup.com.

Gee, J. (2003). What video games have to teach us about learning and literacy. New

York: Palgrave Macmillan.

Gerber, B. L., Cavallo, A. M. L., & Marek, E. A. (2001). Relationships among informal

learning environments, teaching procedures and scientific reasoning ability.

International Journal of Science Education, 23(5), 535-549.

Geva, E., & Cohen, R. (1987). Understanding Turn Commands in Logo: A Cognitive

Perspective. Instructional Science, 16(4), 337-350. doi:10.1007/BF00117751

www.manaraa.com

 122

Gibbons, P. (1995). A Cognitive Processing Account of Individual Differences in Novice

Logo Programmers' Conceptualisation and use of Recursion. Journal of

Educational Computing Research, 13(3), 211-226.

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of

the Field. Educational Researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended

computer science course for middle school students. Computer Science

Education, 25 (2), 1-39.

Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.

Hayes, E. R., & Games, I. A. (2008). Making Computer Games and Design Thinking: A

Review of Current Software and Strategies. Games and Culture, 3(3-4), 309-332.

Howard, J., Watson, J., & Allen, J. (1993). Cognitive-style and the Selection of Logo

Problem-solving Strategies by Young Black-children. Journal of Educational

Computing Research, 9(3), 339-354.

Hoyles, C., Sutherland, R., & Evans, J. (1986). Using logo in the mathematics classroom.

what are the implications of pupil devised goals? Computers & Education, 10(1),

61-71. doi:10.1016/0360-1315(86)90053-9

Hwang, G., Hung, C., & Chen, N. (2014). Improving learning achievements, motivations,

and problem-solving skills through a peer assessment-based game development

approach. Educational Technology Research and Development, 62(2), 129-145.

Intergovernmental Panel on Climate Change. (2013). Summary for policymakers. In T. F.

Stocker, D. Qin, G.-K., Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels,

Y., Xia, V. Bex, P. M. Midgley (Eds.), Climate Change 2013: The physical

www.manaraa.com

 123

science basis. Contribution of Working Group I to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge

University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg1

Ioannidou, A., Repenning, A., Webb, D. C. (2009). AgentCubes: Incremental 3D end-

user development. Journal of Visual Languages and Computing, 20, 236-251.

Ito, M. (2008). Education vs. Entertainment: A Cultural History of Children’s Software.

In Salen, K. (Ed.), The Ecology of Games: Connecting Youth, Games, and

Learning. (pp. 89-116). Cambridge, MA: The MIT Press. doi:

10.1162/dmal.9780262693646.089

Izu, C., Mirolo, C., Settle, A., Mannila, L., & Stupurienė. (2017). Exploring Bebras Tasks

Content and Performance: A Multinational Study. Informatics in Education,

16(1), 39-59, doi: 10.15388/infedu.2017.03

Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide. San

Francisco, CA: Pfeiffer.

Kafai, Y. B. (1995). Minds in play: Computer game design as a context for children’s

learning. Mahwah, NJ: Lawrence Erlbaum.

Kafai, Y. B., & Burke, Q. (2013, September). Computer programming goes back to

school. Kappan, 95(1), 61-65.

Kafai, Y. B., & Burke, Q. (2014). Connected Code: Why Children Need to Learn

Programming. Cambridge, MA: The MIT Press.

Kafai, Y. B., & Burke, Q. (2016). Constructionist Gaming: Understanding the Benefits of

Making Games for Learning. Educational Psychologist, 50(4), 313-332, doi:

10.1080/00461520.2015.1124022

www.manaraa.com

 124

Kafai, Y. B., Peppler, K. A., & Chiu, G. M. (2007). High tech programmers in low-

income communities: Creating a computer culture in a community technology

center. In Communities and Technologies 2007: Proceedings of the Third

Communities and Technoogies Conference (pp. 545-563) doi:10.1007/978-1-

84628-905-7_27

Kafai, Y. B., & Resnick, M. (Eds.) (1994). Constructionism in practice: Designing,

thinking and learning in a digital world. Mahwah, NJ: Lawrence Erlbaum

Associates.

Kaufman. A. S., & Kaufman, N. L. (2014). Kaufman test of educational achievement,

third edition. Bloomington, MN: NCS Pearson.

Kaufman, J.C., & Baer, J. (2012). Beyond New and Appropriate: Who Decides What is

Creative? Creativity Research Journal, 24(1), 83-91. doi:

10.1080/10400419.2012.649237

Kelleher, C. & Pausch, R. (2003). Lowering the barriers to programming: a taxonomy of

programming environments and languages for novice programmers. ACM

Computing Surveys, 37(2), 88-137.

Khalili, N., Sheridan, K., Williams, A., Clark, K., & Stegman, M. (2011). Students

designing video games about immunology: Insights for science

learning. Computers in the Schools, 28(3), 228-240.

doi:10.1080/07380569.2011.594988

Khasawneh, A. A. (2009). Assessing Logo Programming among Jordanian Seventh

Grade Students through Turtle Geometry. International Journal of Mathematical

www.manaraa.com

 125

Education in Science and Technology, 40(5), 619-639.

doi:10.1080/00207390902912845

Kim, S., Chung, K., & Yu, H. (2013). Enhancing digital fluency through a training

program for creative problem solving using computer programming. The Journal

of Creative Behavior, 47(3), 171-199.

Kisiel, J. (2005). Understanding elementary teacher motivations for science fieldtrips.

Science Education, 89(6), 936-955.

Kurland, D. M., & Pea, R. D. (1985). Children’s Mental Models of Recursive Logo

Programs. Journal of Educational Computing Research, 1(2), 235-243.

Leandro, S.A., Lola, P.P., Mercedes, F., Emma, O., & Carmen, F. (2008). Torrance test

of creative thinking: The question of its construct validity. Thinking Skills and

Creativity, 3, 53–58.

Li, Q. (2010). Digital game building: learning in a participatory culture. Educational

Research, 52(4), 427-443.

Liao, Y-K. C., & Bright, G. W. (1991). Effects of Computer Programming on Cognitive

Outcomes: A Meta-Analysis. Journal of Educational Computing Research, 7(3),

251-268.

Lin, J. M., Li, Y., Ho, R., & Li, C. (2007). Effects of guided collaboration on sixth

graders' performance in logo programming. Paper presented at the T1B-11-T1B-

16. doi:10.1109/FIE.2007.4418172

Littlefield, J., Delclos, V. R., Bransford, J. D., Clayton, K. N., & Franks, J. J. (1989).

Some Prerequisites for Teaching Thinking: Methodological Issues in the Study of

www.manaraa.com

 126

LOGO Programming. Cognition and Instruction, 6(4), 331-366.

doi:10.1207/s1532690xci0604_4

Logo History. (2015). Retrieved from http://el.media.mit.edu/logo-

foundation/what_is_logo/history.html

Lohr, S. (2012, February 11). The Age of Big Data. The New York Times. Retrieved from

http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-

world.html?_r=0

Lucas, K.B. (2000). One teacher’s agenda for a class visit to an interactive science center.

Science Education, 84, 545-544.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51-61.

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., Rusk, N. (March, 2008).

Programming by Choice: Urban Youth Learning Programming with Scratch.

Proceedings published by the ACM Special Interest Group on Computer Science

Education, Portland, OR.

Mather, N., and Wendling, B. J. (2014). Examiner’s Manual. Woodcock-Johnson IV Tests

of Cognitive Abilities. Rolling Meadows, IL: Riverside.

Mayer, R. E. (1977). Thinking and problem solving: An introduction to human cognition

and learning. Glenview, IL: Scott, Foresman.

Mayer, R. E. (1999). Fifty years of creativity research. In R. J. Sternberg (Ed.),

Handbook of human creativity (pp. 449–460). New York, NY: Cambridge

University Press.

www.manaraa.com

 127

Mayer, R. E., & Fay, A. L. (1987). A Chain of Cognitive Changes with Learning to

Program in Logo. Journal of Educational Psychology, 79 (3), 269-279.

National Research Council. (2010). Exploring the intersection of science education and

21st century skills: A workshop summary. M. Hilton (Ed.). Washington, DC:

National Academy Press.

National Research Council. (2012). A Framework for K-12 Science Education: Practices,

Crosscutting Concepts, and Core Ideas. Quinn, H., Schweingruber, H., and

Keller, T. (Ed.s). Washington, DC: National Academy Press.

National Science Foundation. (2005). National Science Board 2020 Vision for the

National Science Foundation. (NSB Report-05-142). Retrieved from

http://www.nsf.gov/publications/orderpub.jsp

National Science Foundation. (2009). A Week to Focus on Computer Science Education

[Press Release]. Retrieved from

http://www.nsf.gov/news/news_summ.jsp?cntn_id=116059

Noss, R. (1986). Constructing a conceptual framework for elementary algebra through

logo programming. Educational Studies in Mathematics, 17(4), 335-357.

doi:10.1007/BF00311324

Noss, R. (1987). Children’s learning of geometrical concepts through Logo. Journal for

Research in Mathematics Education, 18(5), 343-362.

Olive, J. (1991). Logo programming and geometric understanding: An in-depth

study. Journal for Research in Mathematics Education, 22(2), 90-111.

Owston, R., Wideman, H., Ronda, N. S., & Brown, C. (2009). Computer game

development as a literacy activity. Computers & Education, 53, 977–989.

www.manaraa.com

 128

Palumbo, D. B. (1990). Programming Language/Problem-Solving Research: A Review of

Relevant Issues. Review of Educational Research, 60(1), 65-89.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books

Inc.: New York, NY.

Papert, S. (1991). Situating constructionism. In Harel and Papert (Eds.), Constructionism

(pp. 1-12). Norwood, NJ: Ablex.

Pantic, K. Fields, D. A., & Quirke, L. (2016). Studying situated learning in a

constructionist programming camp: A multimethod microgenetic analysis of one

girl’s learning pathway. Proceedings of the 15th International Conference on

Interaction Design and Children, Manchester, United Kingdom, 428-439. doi:

10.1145/2930674.2930725.

Pardamean, B., & Evelyn, T. S. (2014). Enhancement of creativity through logo

programming. American Journal of Applied Sciences,11(4), 528-533.

doi:10.3844/ajassp.2014.528.533

Pea, R. D., & Kurland, D. M. (1984). On the Cognitive Effects of Learning Computer

Programming. New Ideas in Psychology, 2(2), 137-168.

Piaget, J. (1936). Origins of Intelligence in the Child. London, UK: Routledge & Kegan

Paul.

Piaget, J. (1951). Play, dreams, and imitation in childhood. New York, NY: Norton.

Piaget, J. (1962). The language and thought of the child (3rd, rev. and enl. ed.). New

York;London;: Routledge. (Original work published 1926)

www.manaraa.com

 129

Pinkston, G. (2015). Forward 50, Teaching Coding Ages 4-12: Programming in the

Elementary School. 5th Annual International Conference on Education & e-

Learning (EeL 2015). doi: 10.5176/2251-1814_EeL15.11

Poulin-Dubois, D., McGilly, C. A., & Shultz, T. R. (1989). Psychology of computer use:

X. effect of learning logo on children's problem-solving skills. Psychological

Reports,64(3), 1327-1337. doi:10.2466/pr0.1989.64.3c.1327

Polya, G. (1957). How to solve it. Garden City, NY: Doubleday/Anchor.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests.

Copenhagen, Denmark: Danish Institute for Educational Research.

Resnick, M., Kafai, Y., & Maeda, J. (2003). ITR: A Networked, Media-Rich

Programming Environment to Enhance Technological Fluency at After-School

Centers. Proposal [funded] to the National Science Foundation, Washington, DC.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).

Scratch: Programming for All. Communications of the ACM, 52(11), 60-67.

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which

cognitive abilities underlie computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human Behavior, 72, 678-691.

Royal Society. (2012). Shut down or restart: The way forward for computing in UK

schools. Retrieved from http://royalsociety.org/education/policy/computin-in-

schools/report/

Rushkoff, D. (2011). Program or Be Programmed? Ten Commands for a Digital Age.

New York: Soft Skull Press.

www.manaraa.com

 130

Sarshar, M. (2017). Explorations in Type-T: Mindset, Flourishing, Psychological

Entitlement, Creativity, and Stress (Doctoral dissertation). Retrieved from

ProQuest Dissertations Publishing. (10683365)

Schanzer, E., Fisler, K., & Krishnamurthi, S. (2013, October). Bootstrap: Going beyond

programing in after-school computer science. Presented at SPLASH-E, Education

track of the OOPSLA/SPLASH conference, Indianapolis, IN.

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015). Transferring skills at

solving word problems from computing to algebra through Bootstrap. In

Proceedings of the 46th ACM Technical symposium on computer science

education (pp. 616–621). New York, NY: ACM.

Schrank, F. A., McGrew, K. S., & Mather, N. (2014). Woodcock-Johnson IV Tests of

Cognitive Abilities. Rolling Meadows, IL; Riverside.

Selby, C., Dorling, M. & Woollard, J., (2014). Evidence of assessing computational

thinking. Retrieved from:

http://eprints.soton.ac.uk/372409/1/372409EvidAssessCT.pdf

Shodor. (2016). Retrieved from http://www.shodor.org/

Squire, K. (2006). From content to context: Videogames as designed

experience. Educational Researcher, 35(8), 19-29.

doi:10.3102/0013189X035008019

STEM Education Act, H. R. 5031, 113th Cong. (2014).

Sternberg, R. J. (1985) Beyond IQ: A triarchic theory of human intelligence. London:

Cambridge University Press.

Sternberg, R. J. (1994). Thinking and problem solving. San Diego, CA: Academic Press.

www.manaraa.com

 131

Straw, S., Bamford, S., & Styles, B. (2017). Randomised Controlled Trial and Process

Evaluation of Code Clubs. Slough: NFER.

Suomala, J. (1996). Eight-year-old-pupils' Problem-solving processes within a LOGO

Learning Environment. Scandinavian Journal of Educational Research, 40(4),

291-309. doi:10.1080/0031383960400402

Sutherland, R. (1993). Connecting Theory and Practice: Results from the Teaching of

Logo. Educational Studies in Mathematics, 24(1), 95-113.

doi:10.1007/BF01273296

Tai, R., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Career choice: Enhanced: Planning

early for careers in science. Science, 312, 1143–1144.

The College Board (2017). AP Computer Science Principles, Course and Exam

Description. New York: NY.

The White House (2016, January 30). Computer Science for All [Web log post].

Retrieved from https://www.whitehouse.gov/blog/2016/01/30/computer-science-

all

Torrance, E.P. (1966). The Torrance Tests of Creative Thinking –Norms-Technical

Manual Research Edition – Verbal Tests, Forms A and B – Figural Tests, Forms

A and B. Princeton, NJ: Personnel Press.

Torrance, E. P. (1969). Creativity. What research says to the teacher. Washington, DC:

National Education Association.

Tracz, W. (1979). Computer Programming and the Human Thought Process. Software –

Practice and Experience, 9, 127-137.

UK Bebras Computational Thinking Challenge. (2016). 2016 Answers. Retrieved from

www.manaraa.com

 132

http://www.bebras.uk/uploads/2/1/8/6/21861082/uk-bebras-2016-answers.pdf

US Bureau of Labor Statistics. (2013). Industry employment and output projections to

2022 (Monthly Labor Review). Retrieved from

http://www.bls.gov/opub/mlr/2013/article/pdf/industry-employment-and-output-

projections-to-2022.pdf

US Department of Education, National Commission on Excellence in Education (1983).

A Nation at Risk: The Imperative for Educational Reform: A report to the Nation

and the Secretary of Education. Washington, DC: Government Printing Office.

Valente, J. A. (2003). How logo has contributed to the understanding of the role of

informatics in education and its relation to the learning process. Informatics in

Education, 2(1), 123-138.

Vygotsky, L. (1978). Mind in society: The development of higher psychological

processes. M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.).

Cambridge, MA: Harvard University Press.

Waite, J. L., Curzon, P., Marsh, W., Sentence, S., & Hadwen-Bennett, A. (2018).

Abstraction in action: K-5 teachers’ uses of levels of abstraction, particularly the

design level, in teaching programming. International Journal of Computer

Science Education in Schools, 2(1),

Werner, L., Denner, L., & Campe, S. (2014). Children Programming Games: A Strategy

for Measuring Computational Learning. ACM Transactions on Computing

Education, 14(4),

Werner, L., Denner, L., Campe, S., & Kawamoto, D. C. (2012). The Fairy Performance

Assessment: Measuring Computational Thinking in Middle School. In

www.manaraa.com

 133

Proceedings of the 44th ACM technical symposium on computer science education

(SIGSCE ’12) (pp. 215-220). New York, NY: ACM.

Werner, L., Hanks, B., & McDowell, C. (2004). Pair programming helps female

computer science students. ACM Journal of Educational Resources in Computing,

4(1).

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

Wing,J. (2008). Computational Thinking and thinking about computing. Philosophical

Transactions of the Royal Society, 366, 3717-3725.

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link

Magazine, Spring. Carnegie Mellon University, Pittsburgh. Retrieved from

http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-

why

Wilson, C., Sudol, A. L., Stephenson, C., & Stehlik, M. (2010). Running on Empty: The

Failure to Teach K-12 Computer Science in the Digital Age. Retrived from

http://csta.acm.org/runningonempty/fullreport.pdf.

Wilson, D., Mundy-Castle, A., & Sibanda, P. (1991). Cognitive Effects of LOGO and

Computer-aided Instruction among Black and White Zimbabwean Primary School

Girls. The Journal of Social Psychology, 131(1), 107.

Wolz, U., Hallberg, C., & Taylor, B. (March, 2011). Scrape: A tool for visualizing the

code of Scratch programs. Poster presented at the 42nd ACM Technical

Symposium on Computer Science Education, Dallas, TX.

Wright, B.D., and Stone, M.H. (1979). Best test design. Chicago, IL; MESA Press.

www.manaraa.com

 134

Wu, M. L., & Richards, K. (2011). Facilitating computational thinking through game

design. In M. Chang, W. Y. Hwang, M. P. Chen, & W. Müller (Eds.),

Edutainment Technologies. Educational Games and Virtual Reality/Augmented

Reality Applications (pp. 220-227). Berlin, Heidelberg: Springer Berlin

Heidelberg. doi:10.1007/978-3-642-23456-9_39

Yagunova, E., Podznyakov, S., Ryzhova, N., Razumovskaia, E., Korovkin, N. (2015).

Tasks classification and age differences in task perception: Case study of

international on-line competition “Beaver”. In: Proc. of the 8th ISSEP Conf. Univ.

of Ljubljana, pp. 33–43.

Yelland, N. J. (1995). Encouraging young children's thinking skills with logo. Childhood

Education, 71(3), 152-155. doi:10.1080/00094056.1995.10521831

Yoo, S. W., Yeum, Y. C., Kim, Y., Cha, S. E., Kim, J. H., Jang, H. S., Choi, S. K., Lee,

H. C., Kwon, D. Y., Han, H. S., Shin, E. M., Song, J. S., Park, J. E., and Lee, W.

G. (2006). Development of an integrated informatics curriculum for K-12 in

Korea. In Informatics Education: The Bridge between Using and Understanding

Computers, Roland Mittermeir (Ed.), Lecture Notes in Computer Science, Vol.

4226. Springer, 199–208. DOI: http://dx.doi.org/10.1007/11915355- 19.

Zur-Bargury, I. (2012). A new curriculum for junior-high in computer science. In

Proceedings of the 17th ACM annual conference on innovation and technology in

computer science education. (pp. 204–208). New York, NY: ACM.

www.manaraa.com

 135

APPENDIX A

CREATIVE PROBLEM SOLVING PRE-TEST

CPS$Pre'test$

Muchofthe$worlds’$oceans$have$yettobe$explored.$To$explore$the$ocean,$high'tech$
machinesandequipmentareneeded.Inthe$deep$partsofthe$ocean,$therearemysterious$
animals,$underwater$volcanoes,andresources$that$peoplecanuse.$There$may$even$be$
things$that$noonehas$ever$seen$before!$

Invent$something$to$explore$the$deep$ocean.$This$invention$must$be$able$to$work$inthe
deepest$parts$oftheocean.$Draw$your$invention$usingthegiven$shapes.$Nameandexplain$your$
inventionbydescribingtheusefulnessofthe$invention$in$detail.$Youcanuse$each$shape$more$
than$once$and$shapes$canbecombined.$
$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'1'

www.manaraa.com

 136

CPS$Pre'test$

Countries$across$the$world$have$realized$that$they$needtoconserve$energy$resourcesto
protecttheenvironment.$Bicycles$are$good$because$they$donotuseupenergy$resources$or$
pollutetheenvironment.$What$wouldyoudotoimprovethedisadvantagesofthe$current$bike?$
Writeasmuchaspossible$about$an$idea$to$upgrade$anything$about$the$bike$thatis
inconvenient.$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'2'

www.manaraa.com

 137

CPS$Pre'test$

When$baseball$was$created,$itwasdifferent$than$itisnow.$Today,$baseball$combines$a$ball$with$
a$wooden$bat.$Come$up$with$a$creative$inventionbycombiningtwounrelated$things$or$objects.$
Putanametoyour$invention$and$write$aboutwhyyou$decided$to$create$the$invention.$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'3'

www.manaraa.com

 138

CPS$Pre'test$

An$idea$sketchisusedtoshow$your$thoughts$through$pictures.Thepictures$could$include$
comics,$scribbles,$tables,$maps,$and$simple$words.$Imagine$that$you’re$with$someone$who$
doesn’t$know$our$language.$You$have$to$explain$the$words$belowtocommunicate$with$himor
her.$Using$an$idea$sketch,$help$this$person$understandasmany$words$ofourlanguageas
possible.$
$

$
$

Word' Pictures' Word' Pictures'

pollution$

$

color$

$

sound$

$

active$

$

sour$

$

mixture$

$

wrong$

$

life'cycle$

$

light$

$

coal$

$

Prompt'4'

www.manaraa.com

 139

CPS$Post(test$

$

The$mysteries$of$outer$spaceareyettobe$discovered,$andourabilitytounderstand$what$
mayliebeyondourown$planet$is$becoming$easierasscienceandtechnology$advance.$To$
explore$outer$space,$scientists$and$engineers$havetocomeupwithnewmethodsand
machinestohandletheharsh$environment$of$deep$space.$

Invent$something$to$explore$outer$space.$The$invention$mustbeabletoworkinthe$deepest,$
darkest$parts$of$space,$and$also$on$different$planets$that$may$have$very$different$
environmental$conditions$than$Earth.$Draw$your$invention$using$the$given$shapes.$Name$and$
explain$your$inventionbydescribingtheusefulnessofthe$invention$in$detail.$Youcanuse$
each$shape$more$than$once,andshapescanbe$combined.$

$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'1'

APPENDIX B

CREATIVE PROBLEM SOLVING POST-TEST

www.manaraa.com

 140

CPS$Post(test$

$

Brooms$make$it$easier$todohousework$such$as$cleaning$the$floor.$Although$brooms$have$been$
aroundforhundredsofyears,thedesignofthe$broom$hasnotchanged$much.$What$would$you$
dotoimproveonthe$disadvantages$ofthecurrent$broom?$Writeasmuchaspossible$about$an$
ideatoupgrade$anything$aboutthebroom$that$is$inconvenient.$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'2'

www.manaraa.com

 141

CPS$Post(test$

$

The$first$peoplewhocaught$fish$used$much$more$simple$equipment$than$today’s$rods$and$
reels.Thefirst$fishing$polewasprobablyastick$with$ropeanda$bone$hook$tied$to$it.$Comeup
with$your$own$creative$inventionbycombiningtwounrelated$things$or$objects.$Putanameto
your$invention$and$write$aboutwhyyou$decided$to$create$the$invention.$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

Prompt'3'

www.manaraa.com

 142

CPS$Post(test$

$

An$idea$sketchisusedtoshow$your$thoughts$through$pictures.Thepictures$could$include$
comics,$scribbles,$tables,$maps,$and$simple$words.$Imagine$that$you’re$with$someone$who$
doesn’t$know$our$language.$You$have$to$explain$the$words$belowtocommunicate$with$himor
her.$Using$an$idea$sketch,$help$this$person$understandasmany$words$ofourlanguageas
possible.$

$

Word' Pictures' Word' Pictures'

energy$

$

weight$

$

smell$

$

lazy$

$

sweet$

$

machine$

$

correct$

$

recycle$

$

dark$

$

plastic$

$

Prompt'4'

www.manaraa.com

 143

APPENDIX C

TYPE T QUESTIONNAIRE

Read the statements below and circle how much they fit with who you are as a person.

1. I like to do exciting things	
 NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

2. I enjoy taking chances NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

3. I like people who are really different from me NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

4. I like to make up my own mind NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

5. Someday I would like to drive a race car in a fast race NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

6. I like thinking about really unusual things NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

7. I like to do things real fast without thinking too much about it NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

8. I enjoy trying new and different food that I’ve never had before NEVER	
 A	
 LITTLE	

BIT	
 A	
 LOT	

© Frank Farley 2017

www.manaraa.com

 144

17

Mazes
A

Castors:
Benjamins:
Cadets:
Juniors:

Juniors:
Seniors:

A robotic car uses a simple rule to drive through a maze:

 Turn right whenever possible.

The picture on the right gives an example
of how the robot would drive through a maze.

Question:
In how many of the following mazes will the car reach the red dot if it uses this system?

 Maze A Maze B Maze C Maze D

Choose from: 0 1 2 3 or 4

Answer:

Explanation:
In the pictures below, the green arrow indicates the path taken by the car. In Maze C the whole
center part of the maze is not visited and the red dot is not reached. In all other cases the red dot
is reached.

It’s Computational Thinking:
CT Skills - Algorithmic Thinking (AL)
CS Domain - Algorithms and programming

The method which is used by our car, is called the wall follower. It is one of the simpler
techniques (algorithms) to solve a maze for which you do not know the layout in advance. By
following this rule you will never get lost: you will always return to the starting point eventually.
However, as can be seen by our example, it does not guarantee that you will visit the entire
maze.

Maze C

APPENDIX D

USA BEBRAS CHALLENGE 2016 QUESTIONS AND ANSWERS

www.manaraa.com

 145

16

Soccer Game
A

Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

The Beaver Rangers have been playing a soccer game against the Forest Raiders.

Here are the goal scorers:

minute 1: Anna
minute 10: Dick
minute 35: Bernard
minute 47: Smithy
minute 73: Backy
minute 89: Richard

2016-US-07b

Question:
If we know that only one team manages to score two goals in a row, which of the following
cannot be the final score?

 3-3 5-1 2-4 or 4-2

Answer:

Explanation:
There are three possible final standings in this game. If one team scores first and the other team
scores 2 in a row the final standing will be 3-3. If the first team scores first and also scores two in
a row then the final standing will be 4-2. If the second team scores first and also scores two in a
row then the final standing will be 2-4.

It’s Computational Thinking:
CT Skills - Algorithmic Thinking (AL), Evaluation (EV)
CS Domain - Algorithms and programming
Tags - IF conditions

The solution to this problem is a nested if statement: The first if statement checks which team
scores first. The second if statement checks if a team scored two goals in a row.

5-1

www.manaraa.com

 146

10

Bottles B
A

Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

A Beaver puts five bottles on a table.
He places them so that every bottle has a bit showing.
He places the first bottle at the back of the table and puts each new bottle in front of those
already placed.

Answer:

E D C B A

Question:
In what order are the bottles placed when they appear as shown in the picture?

E D C B A
D B C A E
E C D A B
D C E B A

Explanation:

It’s Computational Thinking:
CT Skills - Abstraction (AB), Evaluation (EV)
CS Domain - Data, data structures and representations

This is basically a sorting problem. You are asked to sort the bottles in a specific way. Here,
shapes and sizes are important. One has to decide the ordering according to these properties.

You can try to solve this different ways. If you figure out that the thin bottle should be at the
front otherwise it will disappear behind one of the other bottles, you already know that A has to
be in front. You can try that with each bottle in turn until you solve the task. You can also check
which bottle is large at the top or middle, since in those places the bottles differ most. Small
bottles need to be in front.

www.manaraa.com

 147

13

Tube System B
A

Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

A mouse is at the entrance of a tube system. It wants to reach the cheese at the end of tube 5.
The mouse always follows these commands:

 1. Go downwards until a crossing
 2. At the crossing, move through to the next vertical tube
 3. Go to command 1

Question:
In which tube should the mouse start so that it reaches the cheese?

 1 2 3 4 or 5

Answer:

Explanation:

It’s Computational Thinking:
CT Skills - Algorithmic Thinking (AL)
CS Domain - Algorithms and programming

Many robots are programmed so that they have to follow exact commands. This mouse does the
same thing: it follows the commands ‘go downwards’ and ‘change directions at the next crossing’
over and over again. These kind of commands depend on the choice of the tube entrance as to
which way the mouse runs in the tube system. Most computer programs are deterministic: if you
always input the same data, the program performs the same calculations and delivers the same
output.

3

From tube 1 the mouse always reaches tube 3.
From tube 2 it reaches tube 1.
From tube 4 it reaches tube 2.
From tube 5 the mouse gets to tube 4.

www.manaraa.com

 148

11

Party Guests B
A
A

Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

To arrange a dinner party Sara the beaver needs to talk to five friends:

Alicia, Beat, Caroline, David and Emil.

Sara can talk to Emil right away. However, to talk to her other friends, there are a few points to
consider:

1- Before she talks to David, she must first talk to Alicia.
2- Before she talks to Beat, she must first talk to Emil.
3- Before she talks to Caroline, she must first talk to Beat and David.
4- Before she talks to Alicia, she must first talk to Beat and Emil.

Drag the names into the right order.
Question:
In what order should Sara talk to all of her friends if she wants to talk to all of them?
Drag the names into the right order.

 ⇒ ⇒ ⇒ ⇒

Alic ia Beat C aroline David Emil

www.manaraa.com

 149

21

Secret Recipe Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

Eszter has asked István to cook a special cake made of five ingredients.
She has put labels next to the ingredients in the garden. One ingredient has no label.
The labels tell István in what order the ingredients must be added.

The garden looks like this:

Question:
Which ingredient should be added first?

C
B

Answer: Explanation:

If Eszter starts with the flower, she can add all five ingredients in the right order.
The first added ingredient must be the one with no referring image.

Choosing the strawberry, she could not have continued to the next as there is no
paper with it. The apple is not correct because if she had started with the apple, she
would have skipped the red flower. The pine cone is not correct because if she had
started with the cone, she would have skipped the red flower and the apple.

It’s Computational Thinking:
CT Skills - Algorithmic Thinking (AL), Decomposition (DE)
CS Domain - Data, data structures and representations

The data structure used here is called a linked list in which there can be an arbitrary number of
items. A linked list is a linear collection of data elements that consist of an item and a reference
point (pointer) showing the next item. The first item of the linked list is very important as the
list starts from there and it is the only point that refers to the whole list.

The recipe here is a linked list. The ingredients are the items and each slip of paper is the pointer
to the next item in line. In other words the plants are the data and the slips of paper are the
pointers. The first component is that ingredient which is not referred by any paper, but
accompanied by a paper.

The benefit of the linked list is that items of different types and sizes can be stored together, just
like fruits and flowers in this question.

www.manaraa.com

 150

19

Car Trip Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

A self-driving car needs to take a student
to school.
The car is programmed so that it only use
these 3 instructions:
Left: turn 90° left
Right: turn 90° right
Forward: go forward until you cannot
go forward anymore

C
B
A

Answer:

Question:
Write a set of instructions (a program) that will get the beaver to his school. You can do this by
dragging the three instruction blocks next to the car.

Explanation:

CT Skills - Algorithmic Thinking (AL), Decomposition (DE)
CS Domain - Algorithms and programming

The task is similar to giving instructions to a robot: writing a computer program requires step
by step execution. Programs are essential to our use of computers: they tell computers what
sequences of operations they must do. Computers and robots are good at computing fast, doing
repetitive things, but they cannot think just by themselves, and require instructions to perform
tasks. As shown in this task, the order of the operations is very important: the right set of
instructions in the wrong order will not give the expected result.

The important thing for participants to remember is that there is no forward movement when
turning 90 degrees, so the 'straight' command has to be entered between every turn.

It’s Computational Thinking:

www.manaraa.com

 151

18

Robot Exit

Explanation:

It’s Computational Thinking:
CT Skills - Algorithmic Thinking (AL)
CS Domain - Algorithms and programming

In computer programming, a loop is a sequence of instruction's that is continually repeated until
a certain condition is reached.

Typically, a certain process is done, such as getting an item of data and changing it, and then
some condition is checked such as whether a counter has reached a prescribed number.

If it hasn't, the next instruction in the sequence is an instruction to return to the first instruction
in the sequence and repeat the sequence. If the condition has been reached, the next instruction
"falls through" to the next sequential instruction or branches outside the loop.

A loop is a fundamental programming idea that is commonly used in writing programs.

Castors:
Benjamins:
Cadets:

Juniors
Seniors:

Help the green robot to exit the maze.

The robot will repeat your instructions 4 times.

Question:
Drag the arrows to form a set of instructions.

C
B
A

In mobile robotics, maze problem solving is one of the most common problems. To solve this
problem, an autonomous robot is used. Mazes can be of different kinds; having loops, without
any loops, grid systems or without a grid system. In this short loop maze algorithm, the robot is
instructed to follow a preference of directions.

Answer:

www.manaraa.com

 152

20

Party Banner

Answer:

31

Explanation:

We know the pattern ended with YRR, meaning that the James has cut out at least one B. After

that, he cuts out some number of sequences of 4 (i.e., YRRB). After that, the right side of his

piece of paper must have YR, since the second piece begins with RB. So, the length of his piece of

paper is 1 (for B) + 4*X (where X is the number of repeated patterns YRRB) + 2 (for the YR). So,

the length of her paper is 4X+3.

Looking at the possible answers, we see that 31/4 has remainder 3: that is, 31 = 4*7 + 3. So, our

equation is solved when X=7. None of the other answers can be written as 4X+3.

It’s Computational Thinking:

C
B
A

Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

Beaver Bert has a long strip of colored paper for a party.
The strip has three different colors (yellow, red, blue) in a regularly repeating pattern.
Bert's friend, James, has cut out a section of the paper, as shown in the diagram below.

James says that he will give back the missing piece of paper if Bert can correctly guess the size of

the piece cut out.

Question:
How many colored squares does the missing piece of paper have?

 31 32 33 or 34

CT Skills - Abstraction(AB), Evaluation (EV), Generalisation (GE)
CS Domain - Algorithms and programming

Finding a pattern in information is important for a variety of problems. For instance, sequences

of DNA are composed of patterns, and finding repetitions or substrings that satisfy a certain

property is an important research area in genetics and medicine. To solve these sorts of

problems, we use text processing algorithms and pattern-matching programs to help determine

whether certain strings appear in a sequence of text.

This problem also involves some abstraction and generalization: We take a sequence of

information and generalize it into a formula or equation which we can solve. In order for

computer scientists to solve problems, they need to take an explanation and convert it into

something more concrete, formalized and mathematical in order to write a program to solve it.

www.manaraa.com

 153

14

Beaver Code B
B
A

Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

So Barbara” becomes:

She then writes the names of her friends. Unfortunately they all got mixed up.

Question:
Drag the sun-flower-codes to the names of her four friends.

Barbara has been given two stamps.
With one she can produce a little flower, with
the other a little sun.
Being a clever girl, she thinks of a way to write
her own name by using the code below:

Letter B A R E Y
Code

Abby
Arya
Barry
Ray

www.manaraa.com

 154

15

 Answer:

Explanation:

It’s Computational Thinking:
CT Skills - Algorithmic Thinking (AL), Decomposition (DE), Generalisation (GE)
CS Domain - Data, data structures and representations
Tags -

Often in Computational Science, instead of storing data in a simple and straightforward way, we
can devise a scheme to store it more efficiently, using less space.
For instance, computers store information about characters that can be typed on the keyboard
in what is called an ASCII encoding. Each letter corresponds to a different sequence of 8 bits (0's
and 1's). In ASCII, every character takes the same amount of space.
However, letters have different frequencies in texts (for example, the letter “E” is the most
common letter in English words), and we can use these frequencies to improve our encoding.
Specifically, we encode frequent letters with smaller codes: in this question, B should be
frequent and takes one symbol, A two, and the other letters more. There is a famous and widely
used algorithm to do this for texts, named the Huffman coding. You cannot however use any
encoding you wish: you have to make sure the code is unambiguous. For example, suppose the
code was the following: Letter B was one flower, letter A was two flowers.
What do two flowers mean? It could be BB or A, but we have no way to know which one for sure.
One way to achieve unambiguity is to make sure the code is prefix-free; that is if we take the
code of a letter, it is not the beginning of any other code.
Also, since the Huffman code used depends on the text itself (it depends on the frequencies of
letters), it is necessary to store the correspondence between the code and the actual letters. This
takes a bit of space, but is negligible for long texts.

3

This problem is most easily solved by noting that Abby starts with an A and a B and so we look
for a code with two suns and a flower at the start. There is only one of these so this is assigned.
Next it is noted that Arya's code begins with three suns and a flower. Again there is only one of
these so this is assigned. By continuing in this way, all the codes are quickly assigned to the
correct names.

Beaver Code

www.manaraa.com

 155

23

Blossom Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

Jane is playing a computer game.
First the computer secretly chooses colors for five buds. The available colors for each flower are
blue, orange, and pink. Jane has to guess which flower has which color. She makes her first five
guesses and presses the Blossom button.
The buds, whose colors she guessed correctly, break into flowers. The others remain as buds.

Jane's first go:

Jane then has another go at guessing and presses the Blossom button again.

Jane's second go:

Question:
What colors did the computer choose for the flowers?
A. blue pink blue orange orange
B. pink blue blue blue orange
C. pink blue blue pink orange
D. pink pink blue pink orange

C

www.manaraa.com

 156

24

 Answer:
C. pink blue blue pink orange

Explanation:

It’s Computational Thinking:
CT Skills - Evaluation (EV), Generalisation (GE)
CS Domain - Algorithms and programming

Drawing consequences from events that happened or did not happen is an important ability for
solving many kinds of problems. The task is a simplified version of the Mastermind board game.
It is simplified because after each guess the player gets complete information about all the
flowers. If in each guess the player chooses a different color for the not-yet-blossomed flowers,
then in the third guess he/she can always correctly pick the colors of all the flowers.

After two guesses there are three blossomed flowers. So we can already see the color chosen by
the computer for the first, third and fifth flower. The color of the first flower is pink, so answer
A) cannot be correct.
For the second flower Jane guessed pink in the first guess and it did not blossom, then she
guessed orange and it did not blossom either. As there are only three colors available, the
second flower must be blue. This rules out answer D).
Similarly, Jane chose orange and blue for the fourth flower and it still has not blossomed, so it
must be pink. And this rules out answer B)

Answer C) must therefore be correct.

www.manaraa.com

 157

25

Magic Potions Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

A
A

Betaro Beaver has discovered five new magic potions:

one makes ears longer
another makes teeth longer
another makes whiskers curly
another turns the nose white
the last one turns eyes white.

Betaro put each magic potion into a separate beaker. He put pure water into another beaker, so
there are six beakers in total. The beakers are labeled A to F. The problem is, he forgot to record
which beaker contains which magic potion!

To find out which potion is in each beaker, Betaro set up the following experiments:

Expt 1: A beaver drinks from beakers A, B and C together - the effects are shown in Figure 1.

Expt 2: A beaver drinks from beakers A, D and E together - the effects are shown in Figure 2.

Expt 3: A beaver drinks from beakers C, D and F together - the effects are shown in Figure 3.

Question:
Which beaker contains pure water?

C
B

www.manaraa.com

 158

26

Answer:

Explanation:

It’s Computational Thinking:

Solution 1:
By Experiment 1, none of A, B and C is pure water, since there are three changes that happen to
the beaver.
By Experiment 2, either D or E is pure water or the magic potion making his nose white since A
is not pure water, from Experiment 1.
By Experiment 3, D and F are pure water or the magic potion making his whiskers curly, since C
is not pure water, again from Experiment 1.
Therefore, D is pure water.

Solution 2:
Experiment 1 has three effects, Experiment 2 and 3 both have two effects. Therefore, there is no
pure water in Experiment 1 and there is exactly one water beaker in Experiment 2 and
Experiment 3. The only common beaker between experiments 2 and 3 is beaker D. Thus, D is
pure water.

CT Skills - Algorithmic Thinking (AL), Evaluation (EV)
CS Domain - Algorithms and programming

In this problem we have a collection of facts that we need to find new information from. This can
be done using logical reasoning. Logic plays an important role in Computer Science. The smallest
unit a computer works with is a bit, which has a value of 1 (true) or 0 (false). All other
information in a computer is stored using a specific combination of bits. The computer uses
logic to figure out what decisions it should follow, and each of these decisions is based on
whether certain bits are set to true (1) or false (0).

This problem also explores basic set theory. We are looking for an element in the set which is
not in the set used in Experiment 1, which means it is the complement of A, B, C. We then look at
the intersection of Experiments 2 and 3 in order to determine the common element in both.

Beaker D

www.manaraa.com

 159

29

Hurlers Shake Hands Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

A

Beavers enjoy playing hurling.

After the game ends, the beavers in each of the two teams line up in a row and walk past the
other team. As they pass each other, they shake hands. At the beginning, only the first player on
each team shakes hands. Next, the first two players shake hands (see picture below). This
continues until each player has shaken hands with every player on the other team.

There are 15 players on each team.

Question:
If each player takes one second to shake hands and move to the next player, how many seconds
of shaking hands will there be?

C
B

www.manaraa.com

 160

30

Answer:

Explanation:

It’s Computational Thinking:

The amount of handshaking is exactly the length of one line plus the length of the other line,
minus one.

Let us imagine that there is only 1 player on each team. After 1 second, all handshaking has
finished. Let us imagine that there are only 2 players on each team. During the first second, the
first player on each team shakes hands. During the second second, the first player on each team
is shaking hands with the second player on the other team, and during the third second, the
second two players are shaking hands with each other. So, that’s three seconds.

With 15 players in each team, the number of seconds required is 15 + 15 – 1 = 29.

CT Skills - Algorithmic Thinking (AL)
CS Domain - Computer processes and hardware
Tags - Parallel processing

This task can be viewed as an illustration of a parallel processing paradigm called pipeline
processing. Pipeline processing is a very efficient way to get many computers working together
to solve problems quickly, but it can take a relatively long time to reach that efficiency, just like
our players at the back of each line had to wait quite a while before their first handshake.

Analysing the running time of an algorithm is a sophisticated part of computer science called
computational complexity analysis. In this Task, we know the team size is fixed at 15, and can
deduce that the “running time” of the hand shaking algorithm is 29 seconds. However, in
computational complexity we would be asked to measure the running time independent of a
specific team size. We would conclude that the hand shaking algorithm takes 2N-1 seconds, for
any team size N, where N is 1, or any larger natural number.

29

www.manaraa.com

 161

27

Primary Health Care Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

A

Doctor Hamid wants to build three hospitals for the beavers.
The hospitals can only be built on the places shown on the map below.
To get to a hospital, the beavers should not have to swim through more than one stream from
any of these places.

Question:
Choose three places to build the hospitals for
Doctor Hamid.

C
B

www.manaraa.com

 162

28

Answer:

Explanation:

It’s Computational Thinking:

There are several correct solutions, one for instance uses the places E, H and K:

• For the places D, E and I the beavers can swim to E.
• For the places B, C, F, G and H the beavers can swim to H.
• For the places A, C, G and K the beavers can swim to K.
The other solutions are: A E H, C G I, C H I, C I K, C E H and D F K.

CT Skills - Abstraction (AB), Evaluation (EV)
CS Domain - Data, data structures and representations

In Computing this channel system is generalized to the concept of a graph consisting of vertices
(intersections) and edges (water canals). The more general problem is to find a so-called “vertex
cover” in a graph. This is a subset of the vertices that cover the whole graph. Whenever all the
neighbor vertices to this subset are added together, they will cover all vertices of the graph.
Usually a minimal number of such vertices is the most cost efficient. In more complex graphs it is
very hard to find these cost effective subsets of the vertices. It needs a computer algorithm to
find a solution.
The method of placing the stations described in the explanation section is called backtracking.
You try one solution and if it is not correct you take back the last step you’ve made and try
another step, ideally systematically until you have exhausted all possible last steps. Then you
take back the pre-last step, try all solutions and so on until you have found a correct solution.
This method is not very efficient, but for this kind of problems it works reliably.

The solutions can be found by placing a station at a random position and marking all stations
that are reachable within one step. Then you can position the next station and so on. Once all
three stations are placed there are two possibilities: either it’s a solution or there are one or
more places that are not marked. If it’s not a solution, you can remove the last station you’ve
placed and place it in another place and check again. If you are still not lucky to find a solution
with 3 stations you have to “backtrack” and place the last station on another place. By doing this
systematically one can find all possible solutions.

www.manaraa.com

 163

22

Paint it Black Castors:
Benjamins:
Cadets:

Juniors:
Seniors:

Combining Card A and Card B, you get Card C:

Card A Card B Card C

Question:
How many black cells will Card F have after combining Card D and Card E?

C

Answer:

Explanation:

It’s Computational Thinking:

Combining the cards obeys the following rule. When the color of the corresponding cells is the
same the resulting color is black. Otherwise the resulting color is white.

CT Skills - Abstraction (AB), Algorithmic Thinking (AL), Evaluation (EV)
CS Domain - Algorithms and programming
Tags - Boolean algebra

A Boolean circuit is an example of a mathematical computation model. An equivalence is one of
the basic Boolean operations. If the white cell is interpreted as 0 or FALSE and the black cell as
1 or TRUE, this operation could be described this way:

1 ⇔ 1 → 1

0 ⇔ 1 → 0

1 ⇔ 0 → 0

0 ⇔ 0 → 1

3

www.manaraa.com

 164

APPENDIX E

PROGRAMMING CONCEPTUAL KNOWLEDGE POST-TEST

Which of the Scratch programs below will get the Scratch Cat to the donut? (circle your answer)

a) b) c)

d) e) f) I don't know.

Please complete the following items. If you have questions please raise your hand.

Name: ______________________________________

Question 1

www.manaraa.com

 165

Question 2

Look at the script below:

Which number could you enter to make the teacher say "Great!"? (Circle your answer)

a) -5 b) 20 c) 19

d) 21 e) 0 f) I don't know

www.manaraa.com

 166

Question 3

When the green flag is clicked the blades on this windmill turn clockwise. Which of the below sequences
would make the windmill rotate the longest? (Circle your answer)

a) b) c)

d) e)
f) I don't know.

www.manaraa.com

 167

Question 4

Which of the following would you need to do to move the parrot to the right? (Circle your answer)

a) Do nothing b) Click the parrot c) Press the space bar

d) Make some noise e) Press the "g" key f) I don't know.

www.manaraa.com

 168

Question 5

In the program below, the dinosaur should say the 8 times table, however there's a problem with the code
and the dinosaur repeatedly says "8".

Which script contains the correct code to make the dinosaur say the complete 8 times table? (Circle your
answer)

a) b) c)

d) e) f) I don't know.

www.manaraa.com

 169

Question 6

In this Scratch program, the polar bear says to Khalid, "Let me see you dance!" using the Bear Script code
below. Khalid's dance is controlled by the Dance Script code below.

Bear Script

Khalid's Dance Script

a) b) c)

d) e) f) I don't know.

Which script contains the correct code to make Khalid both dance and say, "You can't dance like me!" forever?
(Circle your answer)

www.manaraa.com

 170

Question 7

This moon duck is going to play a Moon Song on the trumpet. His song is exactly 2 minutes and 15 seconds
(135 seconds) long. The "Seconds" timer in the upper right corner of the backdrop should count the seconds so
that other moon ducks can appear on the screen at a specific time in the song, however, something isn't quite
working right. As soon as the green flag is clicked, the seconds timer goes from 0 to 135 instead of counting up
by 1 every second.

Which is the correct sequence of code to play the Moon Song and make the Seconds timer change by one every
second in the song? (Circle your answer)

a) b) c)

d) e) f) I don't know.

www.manaraa.com

 171

APPENDIX F

CORRELATIONS BY OVERALL SAMPLE

1

2
3

4
5

6
7

8
9

10

11

12

13

14

15

16

17

1.
 S

ex

!

2.
 A

ge

.2
90

!

3.
 G

ra
de

.1

90

.8
96

**

!

4.
 S

pE
d

St
at

us

.1
87

-.0

32

-.1
95

!

5.
 P

SS
A

 E
L

A

-
.4

05
*

-.1
96

-.0

25

-.4
85

*
!

6.
 P

SS
A

 M
at

h
.0

30

-.2
07

-.0

34

-.4
77

*
.5

33
**

!

7.
 A

tt
en

da
nc

e
-.3

10

-.2
00

-.2

22

.1
82

.1

81

-.3
27

!

8.
 I

ns
tr

uc
tio

na
l H

rs

-.3
15

-.2

88

-.2
53

.1

98

.1
92

-.2

43

.9
76

**

!

9.
 C

hi
ps

.0

54

.1
11

-.0

83

.0
13

-.1

44

-.5
24

*
.7

45
**

.5

42
*

!

10
. P

C
K

1
.3

22

.0
32

.0

39

-.3
78

.2

27

.3
23

.3

02

.3
41

.0

29

!

11
. P

C
K

2
.2

35

.2
20

.2

75

-.1
77

.3

08

-.0
57

.1

90

.1
71

.1

35

.2
39

!

12
. W

J-
IV

 C
F 1

.4

85
*

.2
86

.3

01

-.0
42

.0

62

.2
28

-.2

57

-.1
85

-.1

81

.5
02

*
.2

29

!

13
. W

J-
IV

 C
F 2

.4

76
*

.3
22

.3

12

-.2
47

.1

37

.0
17

-.1

93

-.1
43

-.1

03

.4
97

.4

11

.7
51

**

!

14
. K

T
E

A
-3

 M
C

A
A

.2
99

.2

04

.3
38

-.4

39

.4
62

*
.7

86
**

-.3

01

-.1
92

-.4

95

.6
20

**

-.1
47

.5

69
*

.2
88

!

15
. K

T
E

A
-3

 M
C

A
B

.3
05

.0

04

.0
85

-.6

94
**

.6

07
**

.8

31
**

-.2

12

-.1
71

-.0

79

.7
77

**

.2
31

.4

46

.3
16

.9

28
**

!

16
. T

yp
e

T

-.1
91

-.0

82

.0
83

-.0

10

.0
23

.2

81

-.1
64

-.0

11

-.5
13

*
-.0

54

-.0
35

.3

17

.0
65

.3

25

-.1
44

!

17
. C

PS
1

.1
64

.1

57

.2
52

-.3

30

.4
88

*
.5

26
*

-.2
09

-.1

43

-.3
99

.2

30

.1
77

.5

10
*

.1
19

.7

99
**

.7

88
**

.2

78

!

18
. C

PS
2

.0
77

.5

97
*

.6
80

**

-.5
22

*
.5

44
*

.5
18

*
-.2

76

-.2
49

-.2

92

.7
20

**

.2
84

.4

54

.1
95

.6

55
*

.6
81

**

.0
43

.7

12
**

No

te
: *

p
<

.0
5;

 **
p

<
.0

1

www.manaraa.com

 172

APPENDIX G

CORRELATIONS BY CONTROL GROUP

1

2
3

4
5

6
7

8
9

10

11

12

13

14

15

16

17

1.
 S

ex

!

2.
 A

ge

.3
59

!

3.
 G

ra
de

.1

90

.9
29

**

!

4.
 S

pE
d

St
at

us

-.1
58

.0

00

.1
03

!

5.
 P

SS
A

 E
L

A

-.4
62

-.5

09

-.3
52

-.3

89

!

6.
 P

SS
A

 M
at

h
-.1

02

-.3
71

-.2

44

-.5
18

.6

37
*

!

7.
 A

tt
en

da
nc

e
-.4

71

-.4
17

-.2

74

.1
65

.4

26

.0
96

!

8.
 I

ns
tr

uc
tio

na
l H

rs

-.4
71

-.4

17

-.2
74

.1

65

.4
26

.0

96

1.
00

!

9.
 C

hi
ps

.3

38

-.1
61

-.1

68

-.7
15

*
.2

58

.5
40

.6

40

.6
40

!

10
. P

C
K

1
.1

09

-.2
14

-.4

21

-.7
56

*
.3

33

.2
14

.3

49

.3
49

.8

00
*

!

11
. P

C
K

2
-.1

04

.0
92

-.0

33

-.6
96

.8

80
*

.5
16

.2

16

.2
16

.2

26

.6
67

!

12
. W

J-
IV

 C
F 1

.4

57

.2
16

.2

19

-.0
58

-.2

87

-.3
04

.0

65

.0
65

.6

73

.5
71

-.2

24

!

13
. W

J-
IV

 C
F 2

.5

16

.4
33

.3

59

-.5
88

.0

61

-.2
79

.0

25

.0
25

.8

01

.7
36

.2

77

.6
77

!

14
. K

T
E

A
-3

 M
C

A
A

.4
33

-.1

26

-.0
20

.0

00

.1
07

.6

43

.5
41

.5

41

.6
98

.0

86

-.2
24

.3

06

-.5
59

!

15
. K

T
E

A
-3

 M
C

A
B

.2
62

-.1

68

-.2
81

-.7

56
*

.5
00

.9

05
**

.0

48

.0
48

.7

41

.5
43

.5

77

.0
29

.1

09

.9
00

*
!

16
. T

yp
e

T

.0
88

-.3

04

-.2
80

.6

81
*

-.0
93

-.2

28

.2
39

.2

39

-.2
96

-.2

79

-.2
16

.0

85

-.2
58

.1

47

-.5
59

!

17
. C

PS
1

.4
53

-.0

48

.0
31

.0

00

.0
12

.0

60

.2
07

.2

07

.6
16

.0

00

-.2
58

.4

46

-.2
05

.8

86
*

.6
67

-.1

47

!

18
. C

PS
2

-.2
93

.4

93

.7
72

-.3

93

.2
57

.5

43

.3
48

.3

48

.3
95

.1

00

.3
95

.3

00

.1
16

.1

00

.3
14

-.5

27

-.4
00

No

te
: *

p
<

.0
5;

 **
p

<
.0

1

www.manaraa.com

 173

APPENDIX H

CORRELATIONS BY EXPERIMENTAL GROUP

1

2
3

4
5

6
7

8
9

10

11

12

13

14

15

16

17

1.
 S

ex

!

2.
 A

ge

.4
18

!

3.
 G

ra
de

.2

33

.9
35

**

!

4.
 S

pE
d

St
at

us

.5
29

-.2

28

-.4
80

!

5.
 P

SS
A

 E
L

A

-.1
23

.0

04

.1
41

-.6

49
*

!

6.
 P

SS
A

 M
at

h
.0

25

.0
30

.1

15

-.5
19

.8

49
**

!

7.
 A

tt
en

da
nc

e
-.1

05

-.1
39

-.2

02

.1
73

-.3

47

-.4
55

!

8.
 I

ns
tr

uc
tio

na
l H

rs

-.1
05

-.1

39

-.2
02

.1

73

-.3
47

-.4

55

1.
00

!

9.
 C

hi
ps

.2

84

.2
31

.0

94

.5
22

-.6

99
*

-.8
51

**

.5
46

.5

46

!

10
. P

C
K

1
.3

90

.4
17

.2

98

-.0
75

.2

63

.2
01

.5

13

.5
13

-.0

79

!

11
. P

C
K

2
.5

19

.5
37

.5

19

.1
63

-.2

75

-.1
85

-.1

05

-.1
05

.3

30

-.1
40

!

12
. W

J-
IV

 C
F 1

.5

20

.3
76

.3

76

-.0
98

.5

40

.5
58

-.5

08

-.5
08

-.1

78

.3
74

.5

52

!

13
. W

J-
IV

 C
F 2

.3

60

.5
19

.3

59

.0
88

.0

98

-.0
43

-.4

08

-.4
08

.0

84

.0
93

.4

04

.6
67

*
!

14
. K

T
E

A
-3

 M
C

A
A

.2
20

.3

89

.4
41

-.4

53

.7
53

**

.7
36

**

-.3
78

-.3

78

-.3
82

.5

62

-.2
94

.8

30
**

.3

25

!

15
. K

T
E

A
-3

 M
C

A
B

.2
17

.3

95

.3
94

-.5

72

.8
28

**

.8
53

**

-.4
08

-.4

08

-.5
63

.8

67
**

-.3

15

.7
23

*
.1

32

.9
71

**

!

16
. T

yp
e

T

-.5
75

.1

83

.2
76

- .5

96
*

.4
29

.4

37

-.2
52

-.2

52

-.5
36

-.1

40

-.1
83

.0

29

-.0
31

.2

43

.2
87

!

17
. C

PS
1

-.1
20

.1

92

.3
63

-.6

71
*

.9
43

**

.7
52

**

-.5
16

-.5

16

-.5
64

.1

42

-.0
73

.6

16
*

.2
02

.8

00
**

.8

38
**

.4

50

!

18
. C

PS
2

.0
34

.6

18

.6
24

-.5

72

.7
62

*
.5

92

-.4
72

-.4

72

-.4
67

.7

58
*

.2
22

.7

15
*

.2
04

.8

12
**

.7

31
*

.2
44

.9

22
**

No

te
: *

p
<

.0
5;

 **
p

<
.0

1

